

hypnettorch - Hypernetworks in PyTorch

Contents:

	Data Handlers

	Hypernets

	Hyperparameter Search

	Main Networks

	Utilities

	Tutorials

	Examples

This package provides functionalities to easily work with hypernetworks in PyTorch. A hypernetwork [image: h(\mathbf{e}, \theta)] is a neural network with parameters [image: \theta] that generates the parameters [image: \omega] of another neural network [image: f(\mathbf{x}, \omega)], called main network. These two network types require specialized implementations. For instance, a main network must have the ability to receive its own weights [image: \omega] as additional input to the forward method (see subpackage mnets). A collection of different hypernetwork implementations can be found in subpackage hnets.

Installation

See here [https://github.com/chrhenning/hypnettorch#installation].

Usage

Check out the tutorials, especially the getting started [https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/getting_started.ipynb] tutorial.

You can also check out example implementations that make use of hypnettorch.

Indices and tables

	Index

	Module Index

	Search Page

Custom data handlers for common ML datasets

Contents

	Custom data handlers for common ML datasets

	Preparation of datasets

	Large-scale CelebFaces Attributes (CelebA) Dataset

	Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

	Udacity Steering Angle Prediction

	API

	Dataset Interface

	Wrapper for large image datasets

	Wrapper for sequential datasets

	CelebA Dataset

	CIFAR-10 Dataset

	CIFAR-100 Dataset

	CUB-200-2011 Dataset

	Fashion-MNIST Dataset

	ILSVRC2012 Dataset

	MNIST Dataset

	Street View House Numbers (SVHN) Dataset

	Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

	Sequential, custom and special datasets

This folder contains data loaders for common datasets. Note, the code in this folder is a derivative of the dataloaders developed in this [https://github.com/chrhenning/ann_implementations/tree/master/src/data] repo. For examples on how to use these data loaders with Tensorflow checkout the original code [https://github.com/chrhenning/ann_implementations].

All dataloaders are derived from the abstract base class hypnettorch.data.dataset.Dataset to provide a common API to the user.

Preparation of datasets

Datasets not mentioned in this section will be automatically downloaded and processed.

Here you can find instructions about how to prepare some of the datasets for automatic processing.

Large-scale CelebFaces Attributes (CelebA) Dataset

CelebA [http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html] is a dataset with over 200K celebrity images. It can be downloaded from here [https://drive.google.com/open?id=0B7EVK8r0v71pWEZsZE9oNnFzTm8].

Google Drive will split the dataset into multiple zip-files. In the following, we explain, how you can extract these files on Linux. To decompress the sharded zip files, simply open a terminal, move to the downloaded zip-files and enter:

$ unzip '*.zip'

This will create a local folder named CelebA.

Afterwards move into the Img subfolder:

$ cd ./CelebA/Img/

You can now decide, whether you want to use the JPG or PNG encoded images.

For the jpeg images, you have to enter:

$ unzip img_align_celeba.zip

This will create a folder img_align_celeba, containing all images in jpeg format.

To save space on your local machine, you may delete the zip file via rm img_align_celeba.zip.

The same images are also available in png format. To extract these, you have to move in the corresponding subdirectory via cd img_align_celeba_png.7z. You can now extract the sharded 7z files by entering:

$ 7z e img_align_celeba_png.7z.001

Again, you may now delete the archives to save space via rm img_align_celeba_png.7z.0*.

You can proceed similarly if you want to work with the original images located in the folder img_celeba.7z.

FYI, there are scripts available (e.g., here [https://github.com/carpedm20/DCGAN-tensorflow/blob/master/download.py]), that can be used to download the dataset.

Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

The ILSVRC2012 dataset is a subset of the ImageNet dataset and contains over 1.2 Mio. training images depicting natural image scenes of 1,000 object classes. The dataset can be downloaded here here [http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads].

For our program to be able to use the dataset, it has to be prepared as described here [https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset].

In the following, we recapitulate the required steps (which are executed from the directory in which the dataset has been loaded to).

	Download the training and validation images as well as the development kit for task 1 & 2 [http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_devkit_t12.tar.gz].

	Extract the training data.

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..

Note, this step deletes the the downloaded tar-file. If this behavior is not desired replace the command rm -f ILSVRC2012_img_train.tar with mv ILSVRC2012_img_train.tar ...

	Extract the validation data and move images to subfolders.

mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
cd ..

This step ensures that the validation samples are grouped in the same folder structure as the training samples, i.e., validation images are stored under their corresponding WordNet ID (WNID).

	Extract the meta data:

mkdir meta && mv ILSVRC2012_devkit_t12.tar.gz meta/ && cd meta && tar -xvzf ILSVRC2012_devkit_t12.tar.gz --strip 1
cd ..

Udacity Steering Angle Prediction

The CH2 steering angle prediction dataset from Udacity can be downloaded here [https://github.com/udacity/self-driving-car/tree/master/datasets/CH2]. In the following, we quickly explain how we expect the downloads to be preprocessed for our datahandler to work.

You may first decompress the files, after which you should have two subfolders Ch2_001 (for the test data) and ``Ch2_002 (for the training data). You may replace the file Ch2_001/HMB_3_release.bag with the complete test set Ch2_001/HMB_3.bag.

We use this docker tool [https://github.com/rwightman/udacity-driving-reader] to extract the information from the Bag files and align the steering information with the recorded images.

Simply clone the repository and execute the ./build.sh. This issue [https://github.com/rwightman/udacity-driving-reader/issues/24] helped us to overcome an error during the build.

Afterwards, the bagfiles can be extracted using (note, that in- and output directory must be specified using absolute paths), for instance

sudo ./run-bagdump.sh -i /data/udacity/Ch2_001/ -o /data/udacity/Ch2_001/

and

sudo ./run-bagdump.sh -i /data/udacity/Ch2_002/ -o /data/udacity/Ch2_002/

The data handler only requires the center/ folder and the file interpolated.csv. All remaining extracted data (for instance, left and right camera images) can be deleted.

Alternatively, the dataset can be downloaded from here [https://academictorrents.com/details/5ac7e6d434aade126696666417e3b9ed5d078f1c]. This dataset appears to contain images recorded a month before the official Challenge 2 dataset was recorded. We could not find any information whether the experimental conditions are identical (e.g., whether steering angles are directly comparable). Additionally, the dataset appears to contain situations like parking, where the vehicle doesn’t move and there is no road ahead. Anyway, if desired, the dataset can be processed similarly to the above mentioned. One may first want to filter the bag file, to only keep information relevant for the task at hand, e.g.:

rosbag filter dataset-2-2.bag dataset-2-2_filtered.bag "topic == '/center_camera/image_color' or topic == '/vehicle/steering_report'"

The bag file can be extracted in to center/ folder and a file interpolated.csv as described above, using ./run-bagdump.sh.

API

Dataset Interface

The module data.dataset contains a template for a dataset interface,
that can be used to feed data into neural networks.

The implementation is based on an earlier implementation of a class I used in
another project:

https://git.io/fN1a6

At the moment, the class holds all data in memory and is therefore not meant
for bigger datasets. Though, it is easy to design wrappers that overcome this
limitation (e.g., see abstract base class
data.large_img_dataset.LargeImgDataset).

	hypnettorch.data.dataset.Dataset.get_test_ids()

	Get unique identifiers all test samples.

	hypnettorch.data.dataset.Dataset.get_train_ids()

	Get unique identifiers all training samples.

	hypnettorch.data.dataset.Dataset.get_val_ids()

	Get unique identifiers all validation samples.

	hypnettorch.data.dataset.Dataset.get_test_inputs()

	Get the inputs of all test samples.

	hypnettorch.data.dataset.Dataset.get_test_outputs([...])

	Get the outputs (targets) of all test samples.

	hypnettorch.data.dataset.Dataset.get_train_inputs()

	Get the inputs of all training samples.

	hypnettorch.data.dataset.Dataset.get_train_outputs([...])

	Get the outputs (targets) of all training samples.

	hypnettorch.data.dataset.Dataset.get_val_inputs()

	Get the inputs of all validation samples.

	hypnettorch.data.dataset.Dataset.get_val_outputs([...])

	Get the outputs (targets) of all validation samples.

	hypnettorch.data.dataset.Dataset.input_to_torch_tensor(x, ...)

	This method can be used to map the internal numpy arrays to PyTorch tensors.

	hypnettorch.data.dataset.Dataset.is_image_dataset()

	Are input (resp.

	hypnettorch.data.dataset.Dataset.next_test_batch(...)

	Return the next random test batch.

	hypnettorch.data.dataset.Dataset.next_train_batch(...)

	Return the next random training batch.

	hypnettorch.data.dataset.Dataset.next_val_batch(...)

	Return the next random validation batch.

	hypnettorch.data.dataset.Dataset.test_iterator(...)

	A generator to loop over the test set.

	hypnettorch.data.dataset.Dataset.train_iterator(...)

	A generator to loop over the training set.

	hypnettorch.data.dataset.Dataset.val_iterator(...)

	A generator to loop over the validation set.

	hypnettorch.data.dataset.Dataset.output_to_torch_tensor(y, ...)

	Similar to method input_to_torch_tensor(), just for dataset outputs.

	hypnettorch.data.dataset.Dataset.plot_samples(...)

	Plot samples belonging to this dataset.

	hypnettorch.data.dataset.Dataset.reset_batch_generator([...])

	The batch generation possesses a memory.

	hypnettorch.data.dataset.Dataset.tf_input_map([mode])

	This method should be used by the map function of the Tensorflow Dataset interface (tf.data.Dataset.map).

	hypnettorch.data.dataset.Dataset.tf_output_map([mode])

	Similar to method tf_input_map(), just for dataset outputs.

	hypnettorch.data.dataset.Dataset.test_ids_to_indices(...)

	Translate an array of test sample identifiers to test indices.

	hypnettorch.data.dataset.Dataset.train_ids_to_indices(...)

	Translate an array of training sample identifiers to training indices.

	hypnettorch.data.dataset.Dataset.val_ids_to_indices(...)

	Translate an array of validation sample identifiers to validation indices.

	
class hypnettorch.data.dataset.Dataset

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A general dataset template that can be used as a simple and consistent
interface. Note, that this is an abstract class that should not be
instantiated.

In order to write an interface for another dataset, you have to implement
an inherited class. You must always call the constructor of this base class
first when instantiating the implemented subclass.

Note, the internals are stored in the private member _data, that is
described in the constructor.

	
property classification

	Whether the dataset is a classification or regression
dataset.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract get_identifier()

	Returns the name of the dataset.

	Returns:

	The dataset its (unique) identifier.

	Return type:

	(str [https://docs.python.org/3/library/stdtypes.html#str])

	
get_test_ids()

	Get unique identifiers all test samples.

See documentation of method get_train_ids() for details.

	Returns:

	A 1D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_test_inputs()

	Get the inputs of all test samples.

See documentation of method get_train_inputs() for details.

	Returns:

	A 2D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_test_outputs(use_one_hot=None)

	Get the outputs (targets) of all test samples.

See documentation of method get_train_outputs() for details.

	Parameters:

	(....) – See docstring of method get_train_outputs().

	Returns:

	A 2D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_train_ids()

	Get unique identifiers all training samples.

Each sample in the dataset has a unique identifier (independent of the
dataset split it is assigned to).

Note

Sample identifiers do not correspond to the indices of samples
within a dataset split (i.e., the returned identifiers of this
method cannot be used as indices for the returned arrays of methods
get_train_inputs() and get_train_outputs())

	Returns:

	A 1D numpy array containing the unique identifiers
for all training samples.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_train_inputs()

	Get the inputs of all training samples.

Note, that each sample is encoded as a single vector. One may use the
attribute in_shape to decode the actual shape of an input
sample.

	Returns:

	A 2D numpy array, where each row encodes a training
sample.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_train_outputs(use_one_hot=None)

	Get the outputs (targets) of all training samples.

Note, that each sample is encoded as a single vector. One may use the
attribute out_shape to decode the actual shape of an output
sample. Keep in mind, that classification samples might be one-hot
encoded.

	Parameters:

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – For classification samples, the encoding of the
returned samples can be either “one-hot” or “class index”. This
option is ignored for datasets other than classification sets.
If None, the dataset its default encoding is returned.

	Returns:

	A 2D numpy array, where each row encodes a training
target.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_val_ids()

	Get unique identifiers all validation samples.

See documentation of method get_train_ids() for details.

	Returns:

	A 1D numpy array. Returns None if no validation
set exists.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_val_inputs()

	Get the inputs of all validation samples.

See documentation of method get_train_inputs() for details.

	Returns:

	A 2D numpy array. Returns None if no validation
set exists.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_val_outputs(use_one_hot=None)

	Get the outputs (targets) of all validation samples.

See documentation of method get_train_outputs() for details.

	Parameters:

	(....) – See docstring of method get_train_outputs().

	Returns:

	A 2D numpy array. Returns None if no validation
set exists.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
property in_shape

	The original shape of an input sample.

Note, that samples are encoded by this class as individual vectors
(e.g., an MNIST sample is ancoded as 784 dimensional vector, but its
original shape is: [28, 28, 1]).
A sequential sample is encoded by concatenating all timeframes.
Hence, the number of timesteps can be decoded by dividing a single
sample vector by np.prod(in_shape).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, subclasses might overwrite this method and add data preprocessing/
augmentation.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D numpy array, containing inputs as provided
by this dataset.

	device (torch.device [https://pytorch.org/docs/master/tensor_attributes.html#torch.device] or int [https://docs.python.org/3/library/functions.html#int]) – The PyTorch device onto which the
input should be mapped.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – See docstring of method tf_input_map().
Valid values are: train and inference.

	force_no_preprocessing (bool [https://docs.python.org/3/library/functions.html#bool]) – In case preprocessing is applied to
the inputs (e.g., normalization or random flips/crops), this
option can be used to prohibit any kind of manipulation. Hence,
the inputs are transformed into PyTorch tensors on an “as is”
basis.

	sample_ids (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – See method
train_ids_to_indices(). Instantiation of this class might
make use of this information, for instance in order to reduce
the amount of zero padding within a mini-batch.

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
is_image_dataset()

	Are input (resp. output) samples images?

Note, for sequence datasets, this method just returns whether a single
frame encodes an image.

	Returns:

	Tuple containing two booleans:

	input_is_img

	output_is_img

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property is_one_hot

	Whether output labels are one-hot encoded for a classification task
(None otherwise).

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool] or None

	
next_test_batch(batch_size, use_one_hot=None, return_ids=False)

	Return the next random test batch.

See documentation of method next_train_batch() for details.

	Parameters:

	(....) – See docstring of method next_train_batch().

	Returns:

	List containing the following 2D numpy arrays:

	batch_inputs

	batch_outputs

	batch_ids (optional)

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
next_train_batch(batch_size, use_one_hot=None, return_ids=False)

	Return the next random training batch.

If the behavior of this method should be reproducible, please define a
numpy random seed.

	Parameters:

	
	(....) – See docstring of method get_train_outputs().

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the returned batch.

	return_ids (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a third value will be returned
that is a 1D numpy array containing sample identifiers.

Note

Those integer values are internal unique sample identifiers
and in general do not correspond to indices within the
corresponding dataset split (i.e., the training split in
this case).

	Returns:

	List containing the following 2D numpy arrays:

	batch_inputs: The inputs of the samples belonging to the
batch.

	batch_outputs: The outputs of the samples belonging to the
batch.

	batch_ids (optional): See option return_ident.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
next_val_batch(batch_size, use_one_hot=None, return_ids=False)

	Return the next random validation batch.

See documentation of method next_train_batch() for details.

	Parameters:

	(....) – See docstring of method next_train_batch().

	Returns:

	List containing the following 2D numpy arrays:

	batch_inputs

	batch_outputs

	batch_ids (optional)

Returns None if no validation set exists.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
property num_classes

	The number of classes for a classification task (None otherwise).

	Type:

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property num_test_samples

	The number of test samples.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property num_train_samples

	The number of training samples.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property num_val_samples

	The number of validation samples.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property out_shape

	The original shape of an output sample (see
in_shape).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	Similar to method input_to_torch_tensor(), just for dataset
outputs.

Note, in this default implementation, it is also does not perform any
data preprocessing.

	Parameters:

	(....) – See docstring of method input_to_torch_tensor().

	Returns:

	The given output y as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True, filename=None, interactive=False, figsize=(10, 6), **kwargs)

	Plot samples belonging to this dataset. Each sample will be plotted
in its own subplot.

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of the whole figure.

	inputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D numpy array, where each row is an input
sample.

	outputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A 2D numpy array of actual
dataset targets.

	predictions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A 2D numpy array of predicted
output samples (i.e., output predicted by a neural network).

	num_samples_per_row (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of samples plotted
per row in the generated figure.

	show (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the plot should be shown.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If provided, the figure will be stored
under this filename.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn on interactive mode. We mainly
use this option to ensure that the program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.
Note, if using the iPython inline backend, this option has no
effect.

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple, determining the size of the
figure in inches.

	**kwargs (optional) – Optional keyword arguments that can be dataset
dependent.

	
reset_batch_generator(train=True, test=True, val=True)

	The batch generation possesses a memory. Hence, the samples returned
depend on how many samples already have been retrieved via the next-
batch functions (e.g., next_train_batch()). This method can be
used to reset these generators.

	Parameters:

	
	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the generator for
next_train_batch() is reset.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the generator for next_test_batch()
is reset.

	val (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the generator for next_val_batch()
is reset, if a validation set exists.

	
property sequence

	Whether the dataset contains sequences (samples have temporal
structure).
In case of a sequential dataset, the temporal structure can be decoded
via the shape attributes of in- and outputs.
Note, that all samples are internally zero-padded to the same
length.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property shuffle_test_samples

	Whether the method next_test_batch() returns test samples in
random order at every epoch. Defaults to True, i.e., samples have a
random ordering every epoch.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Setter:

	Note, setting this attribute will reset the current batch
generator, such that the next call to the method
next_test_batch() results in starting a sweep through a new
epoch (full batch).

	
property shuffle_val_samples

	Same as shuffle_test_samples for samples from the validation
set.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
test_ids_to_indices(sample_ids)

	Translate an array of test sample identifiers to test indices.

See documentation of method train_ids_to_indices() for details.

	Parameters:

	(....) – See docstring of method train_ids_to_indices().

	Returns:

	A 1D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
test_iterator(batch_size, return_remainder=True, **kwargs)

	A generator to loop over the test set.

See documentation of method train_iterator().

	Parameters:

	(....) – See docstring of method train_iterator().

	Yields:

	(list) – The same list that would be returned by method
next_test_batch() but additionally prepended with the batch
size.

	
tf_input_map(mode='inference')

	This method should be used by the map function of the Tensorflow
Dataset interface (tf.data.Dataset.map). In the default case, this
is just an identity map, as the data is already in memory.

There might be cases, in which the full dataset is too large for the
working memory, and therefore the data currently needed by Tensorflow
has to be loaded from disk. This function should be used as an
interface for this process.

	Parameters:

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Is the data needed for training or inference? This
distinction is important, as it might change the way the data is
processed (e.g., special random data augmentation might apply
during training but not during inference. The parameter is a
string with the valid values being train and inference.

	Returns:

	A function handle, that maps the given input tensor to
the preprocessed input tensor.

	Return type:

	(function)

	
tf_output_map(mode='inference')

	Similar to method tf_input_map(), just for dataset outputs.

Note, in this default implementation, it is also just an identity map.

	Parameters:

	(....) – See docstring of method tf_input_map().

	Returns:

	A function handle.

	Return type:

	(function)

	
train_ids_to_indices(sample_ids)

	Translate an array of training sample identifiers to training
indices.

This method translates unique training identifiers (see method
get_train_ids()) to actual training indices, that can be used
to index the training set.

	Parameters:

	sample_ids (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 1D numpy array of unique sample IDs
(e.g., those returned when using option return_ids of method
next_train_batch()).

	Returns:

	A 1D array of training indices that has the same
length as sample_ids.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
train_iterator(batch_size, return_remainder=True, **kwargs)

	A generator to loop over the training set.

This generator yields the return value of next_train_batch()
prepended with the current batch size.

Example

for batch_size, x, y in data.train_iterator(32):
 x_t = data.input_to_torch_tensor(x, device, mode='train')
 y_t = data.output_to_torch_tensor(y, device, mode='train')

 # ...

for batch_size, x, y, ids in data.train_iterator(32, \
 return_ids=True):
 x_t = data.input_to_torch_tensor(x, device, mode='train')
 y_t = data.output_to_torch_tensor(y, device, mode='train')

 # ...

Note

This method will only temporarily modify the internal batch
generator (see method reset_batch_generator()) until the epoch
is completed.

	Parameters:

	
	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – The batch size used.

Note

If batch_size is not an integer divider of
num_train_samples, then the last yielded batch will
be smaller if return_remainder is True.

	return_remainder (bool [https://docs.python.org/3/library/functions.html#bool]) – The last batch might have to be smaller if
batch_size is not an integer divider of
num_train_samples. If this attribute is False, this
last part is not yielded and all batches have the same size.

Note

If return_remainder is se tto False, then it may be
that not all training samples are yielded.

	**kwargs – Keyword arguments that are passed to method
next_train_batch().

	Yields:

	(list) – The same list that would be returned by method
next_train_batch() but additionally prepended with the batch
size.

	
val_ids_to_indices(sample_ids)

	Translate an array of validation sample identifiers to validation
indices.

See documentation of method train_ids_to_indices() for details.

	Parameters:

	(....) – See docstring of method train_ids_to_indices().

	Returns:

	A 1D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
val_iterator(batch_size, return_remainder=True, **kwargs)

	A generator to loop over the validation set.

See documentation of method train_iterator().

	Parameters:

	(....) – See docstring of method train_iterator().

	Yields:

	(list) – The same list that would be returned by method
next_val_batch() but additionally prepended with the batch
size.

Wrapper for large image datasets

The module data.large_img_dataset contains an abstract wrapper for large
datasets, that have images as inputs. Typically, these datasets are too large to
be loaded into memory. Though, their outputs (labels) can still easily be hold
in memory. Hence, the idea is, that instead of loading the actual images, we
load the paths for each image into memory. Then we can load the images from disk
as needed.

To sum up, handlers that implement this interface will hold the outputs and
paths for the input images of the whole dataset in memory, but not the actual
images.

As an alternative, one can implement wrappers for HDF5 and TFRecord files.

Here is a simple example that illustrates the format of the dataset:

https://www.tensorflow.org/guide/datasets#decoding_image_data_and_resizing_it

In case of working with PyTorch, rather than using the internal methods for
batch processing (such as data.dataset.Dataset.next_train_batch()) one
should adapt PyTorch its data processing utilities (consisting of
torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset] and torch.utils.data.DataLoader [https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader])
in combination with class attributes such as
data.large_img_dataset.LargeImgDataset.torch_train.

	
class hypnettorch.data.large_img_dataset.LargeImgDataset(imgs_path, png_format=False)

	Bases: Dataset

A general dataset template for datasets with images as inputs, that are
locally stored as individual files. Note, that this is an abstract class
that should not be instantiated.

Hints, when implementing the interface:

	Attribute data.dataset.Dataset.in_shape still has to be
correctly implemented, independent of the fact, that the actual input
data is a list of strings.

	Parameters:

	
	imgs_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the folder, containing the image files
(the actual image paths contained in the input data (see e.g.,
data.dataset.Dataset.get_train_inputs()) will
be concatenated to this path).

	png_format (bool [https://docs.python.org/3/library/functions.html#bool]) – The images are typically assumed to be jpeg encoded.
You may change this to png enocded images.

	
get_test_inputs()

	Get the inputs of all test samples.

	Returns:

	An np.chararray, where each row corresponds to an
image file name.

	Return type:

	(numpy.chararray [https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray])

	
get_train_inputs()

	Get the inputs of all training samples.

	Returns:

	An np.chararray, where each row corresponds to an
image file name.

	Return type:

	(numpy.chararray [https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray])

	
get_val_inputs()

	Get the inputs of all validation samples.

	Returns:

	An np.chararray, where each row corresponds to an
image file name. If no validation set exists, None will be
returned.

	Return type:

	(numpy.chararray [https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray])

	
property imgs_path

	The base path of all images.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	Note, this method has been overwritten from the base class. It should
not be used for large image datasets. Instead, the class should provide
instances of class torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset] for training,
validation and test set:

	torch_train

	torch_test

	torch_val

	
property png_format_used

	Whether png or jped encoding of images is assumed.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
read_images(inputs)

	For the given filenames, read and return the images.

	Parameters:

	inputs (numpy.chararray [https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray]) – An np.chararray of filenames.

	Returns:

	A 2D numpy array, where each row contains a
picture.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
tf_input_map(mode='inference')

	Note, this method has been overwritten from the base class.

It provides a function handle that loads images from file, resizes them
to match the internal input image size and then flattens the image to
a vector.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.tf_input_map().

	Returns:

	A function handle, that maps the given input tensor to
the preprocessed input tensor.

	Return type:

	(function)

	
property torch_test

	The PyTorch compatible test dataset.

	Type:

	torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset]

	
property torch_train

	The PyTorch compatible training dataset.

	Type:

	torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset]

	
property torch_val

	The PyTorch compatible validation dataset.

	Type:

	torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset]

Wrapper for sequential datasets

The module data.sequential_dataset contains an abstract wrapper for
datasets containing sequential data.

Even though the dataset interface data.dataset.Dataset contains basic
support for sequential datasets, this wrapper was considered necessary to
increase the convinience when working with sequential datasets (especially,
if those datasets contain sequences of varying lengths).

	
class hypnettorch.data.sequential_dataset.SequentialDataset

	Bases: Dataset

A general wrapper for datasets with sequential inputs and outpus.

	
get_in_seq_lengths(sample_ids)

	Get the unpadded input sequence lengths for given samples.

	Parameters:

	sample_ids (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 1D numpy array of unique sample
identifiers. Please see documentation of option return_ids
of method data.dataset.Dataset.next_train_batch() as well
as method data.dataset.Dataset.get_train_ids() for more
information of sample identifiers.

	Returns:

	A 1D array of the same length as sample_ids
containing the unpadded input sequence lengths of these samples.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
get_out_seq_lengths(sample_ids)

	Get the unpadded output sequence lengths for given samples.

See documentation of method get_in_seq_lengths().

	Parameters:

	(....) – See docstring of method get_in_seq_lengths().

	Returns:

	A 1D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor. It has
dimensions [T, B, *in_shape], where T is the number of time
steps (see attribute max_num_ts_in), B is the batch size
and in_shape refers to the input feature shape, see
data.dataset.Dataset.in_shape.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
property max_num_ts_in

	The maximum number of timesteps input sequences may have.

Note

Internally, all input sequences are stored according to this
length using zero-padding.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property max_num_ts_out

	The maximum number of timesteps output sequences may have.

Note

Internally, all input sequences are stored according to this
length using zero-padding.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	Similar to method input_to_torch_tensor(), just for dataset
outputs.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.output_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor. It has
dimensions [T, B, *out_shape], where T is the number of time
steps (see attribute max_num_ts_out), B is the batch
size and out_shape refers to the output feature shape, see
data.dataset.Dataset.out_shape.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

CelebA Dataset

The module data.celeba_data contains a handler for the CelebA dataset.

	More information about the dataset can be retrieved from:
	http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Note, in the current implementation, this handler will not download and extract
the dataset for you. You have to do this manually by following the instructions
of the README file (which is located in the same folder as this file).

Note, this dataset has not yet been prepared for PyTorch use!

	
class hypnettorch.data.celeba_data.CelebAData(data_path, use_png=False, shape=None)

	Bases: LargeImgDataset

An instance of the class shall represent the CelebA dataset.

The input data of the dataset will be strings to image files. The output
data will be vectors of booleans, denoting whether a certain type of
attribute is present in the picture.

Note

The dataset has to be already downloaded and extracted before
this class can be instantiated. See the local README file for details.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from?

	use_png (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the png rather than the jpeg images should be
used. Note, this class only considers the aligned and cropped
images.

	shape (optional) – If given, this images loaded from disk will be
reshaped to that shape.

	
get_attribute_names()

	Get the names of the different attributes classified by this
dataset.

	Returns:

	A list of attributes. The order of the list will have the
same order as the output labels.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_identifier()

	Returns the name of the dataset.

CIFAR-10 Dataset

The module data.cifar10_data contains a handler for the CIFAR 10 dataset.

The dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.

	Information about the dataset can be retrieved from:
	https://www.cs.toronto.edu/~kriz/cifar.html

	
class hypnettorch.data.cifar10_data.CIFAR10Data(data_path, use_one_hot=False, use_data_augmentation=False, validation_size=5000, use_cutout=False)

	Bases: Dataset

An instance of the class shall represent the CIFAR-10 dataset.

Note, the constructor does not safe a data dump (via pickle) as, for
instance, the MNIST data handler (data.mnist_data.MNISTData) does.
The reason is, that the downloaded files are already in a nice to read
format, such that the time saved to read the file from a dump file is
minimal.

Note

By default, input samples are provided in a range of [0, 1].

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	use_data_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Note, this option currently only applies
to input batches that are transformed using the class member
input_to_torch_tensor() (hence, only available for
PyTorch, so far).

Note

If activated, the statistics of test samples are changed as
a normalization is applied.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether option apply_cutout should be set of
method torch_input_transforms(). We use cutouts of size
16 x 16 as recommended
here [https://arxiv.org/pdf/1708.04552.pdf].

Note

Only applies if use_data_augmentation is set.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled.
Preprocessing involves normalization and (for training mode) random
perturbations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
plot_sample(image, label=None, figsize=1.5, interactive=False, file_name=None)

	Plot a single CIFAR-10 sample.

This method is thought to be helpful for evaluation and debugging
purposes.

Deprecated since version 1.0: Please use method data.dataset.Dataset.plot_samples() instead.

	Parameters:

	
	image – A single CIFAR-10 image (given as 1D vector).

	label – The label of the given image.

	figsize – The height and width of the displayed image.

	interactive – Turn on interactive mode. Thus program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.

	file_name – (optional) If a file name is provided, then the image
will be written into a file instead of plotted to the screen.

	
static torch_augment_images(x, device, transform, img_shape=[32, 32, 3])

	Augment CIFAR-10 images using a given PyTorch transformation.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D-Numpy array containing CIFAR-10 images.

	device (torch.device [https://pytorch.org/docs/master/tensor_attributes.html#torch.device] or int [https://docs.python.org/3/library/functions.html#int]) – The PyTorch device on which the
resulting tensor should be.

	transform – A torchvision.transforms method to modify the
data.

	Returns:

	The augmented images as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
static torch_input_transforms(apply_rand_hflips=True, apply_cutout=False, cutout_length=16, cutout_n_holes=1)

	Get data augmentation pipelines for CIFAR-10 inputs.

	Note, the augmentation is inspired by the augmentation proposed in:
	https://www.aiworkbox.com/lessons/augment-the-cifar10-dataset-using-the-randomhorizontalflip-and-randomcrop-transforms

Note

We use the same data augmentation pipeline for CIFAR-100, as the
images are very similar. Here is an example where they use slightly
different normalization values, but we ignore this for now:
https://zhenye-na.github.io/2018/10/07/pytorch-resnet-cifar100.html

	Parameters:

	
	apply_rand_hflips (bool [https://docs.python.org/3/library/functions.html#bool]) – Apply random horizontal flips during
training.

	apply_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the cutout transformation should be
applied to training inputs (see class
utils.torch_utils.CutoutTransform).

	cutout_length (int [https://docs.python.org/3/library/functions.html#int]) – If apply_cutout is True, then this will
be passed as constructor argument length to class
utils.torch_utils.CutoutTransform.

	cutout_n_holes (int [https://docs.python.org/3/library/functions.html#int]) – If apply_cutout is True, then this
will be passed as constructor argument n_holes to class
utils.torch_utils.CutoutTransform.

	Returns:

	Tuple containing:

	train_transform: A transforms pipeline that applies random
transformations and normalizes the image.

	test_transform: Similar to train_transform, but no random
transformations are applied.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

CIFAR-100 Dataset

The module data.cifar100_data contains a handler for the CIFAR 100
dataset.

The dataset consists of 60000 32x32 colour images in 100 classes, with 600
images per class. There are 50000 training images and 10000 test images.

	Information about the dataset can be retrieved from:
	https://www.cs.toronto.edu/~kriz/cifar.html

	
class hypnettorch.data.cifar100_data.CIFAR100Data(data_path, use_one_hot=False, use_data_augmentation=False, validation_size=5000, use_cutout=False)

	Bases: Dataset

An instance of the class shall represent the CIFAR-100 dataset.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	use_data_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Note, this option currently only applies
to input batches that are transformed using the class member
input_to_torch_tensor() (hence, only available for
PyTorch, so far).

Note

If activated, the statistics of test samples are changed as
a normalization is applied (identical to the of class
data.cifar10_data.CIFAR10Data).

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether option apply_cutout should be set of
method torch_input_transforms(). We use cutouts of size
8 x 8 as recommended
here [https://arxiv.org/pdf/1708.04552.pdf].

Note

Only applies if use_data_augmentation is set.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled.
Preprocessing involves normalization and (for training mode) random
perturbations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

CUB-200-2011 Dataset

The module data.cub_200_2011_data contains a dataloader for the
Caltech-UCSD Birds-200-2011 Dataset (CUB-200-2011).

The dataset is available at:

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

For more information on the dataset, please refer to the corresponding
publication:

Wah et al., “The Caltech-UCSD Birds-200-2011 Dataset”,
California Institute of Technology, 2011.
http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf

The dataset consists of 11,788 images divided into 200 categories. The dataset
has a specified train/test split and a lot of additional information (bounding
boxes, segmentation, parts annotation, …) that we don’t make use of yet.

Note

This dataset should not be confused with the older version CUB-200,
containing only 6,033 images.

Note

We use the same data augmentation as for class
data.ilsvrc2012_data.ILSVRC2012Data.

Note

The original category labels range from 1-200. We modify them to range
from 0 - 199.

	
class hypnettorch.data.cub_200_2011_data.CUB2002011(data_path, use_one_hot=False, num_val_per_class=0)

	Bases: LargeImgDataset

An instance of the class shall represent the CUB-200-2011 dataset.

The input data of the dataset will be strings to image files. The output
data corresponds to object labels (bird categories).

Note

The dataset will be downloaded if not available.

Note

The original category labels range from 1-200. We modify them to
range from 0 - 199.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

Note

This option does not influence the internal PyTorch
Dataset classes (e.g., cmp.
data.large_img_dataset.LargeImgDataset.torch_train),
that can be used in conjunction with PyTorch data loaders.

	num_val_per_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples per class.
For instance: If value 10 is given, a validation set of size
5 * 200 = 1,000 is constructed (these samples will be removed
from the training set).

Note

Validation samples use the same data augmentation pipeline
as test samples.

	
get_identifier()

	Returns the name of the dataset.

	
tf_input_map(mode='inference')

	Not impemented.

Fashion-MNIST Dataset

The module data.fashion_mnist contains a handler for the
Fashion-MNIST [https://github.com/zalandoresearch/fashion-mnist] dataset.

The dataset was introduced in:

Xiao et al., Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms [https://arxiv.org/abs/1708.07747], 2017.

This module contains a simple wrapper from the corresponding
torchvision dataset [https://pytorch.org/docs/master/torchvision/datasets.html#fashion-mnist] to our dataset interface data.dataset.Dataset.

	
class hypnettorch.data.fashion_mnist.FashionMNISTData(data_path, use_one_hot=False, validation_size=0, use_torch_augmentation=False)

	Bases: Dataset

An instance of the class shall represent the Fashion-MNIST dataset.

Note

By default, input samples are provided in a range of [0, 1].

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_torch_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Apply data augmentation to inputs when
calling method data.dataset.Dataset.input_to_torch_tensor().

The augmentation will be identical to the one provided by class
data.mnist_data.MNISTData, except that during training
also random horizontal flips are applied.

Note

If activated, the statistics of test samples are changed as
a normalization is applied.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

If enabled via constructor option use_torch_augmentation, input
images are preprocessed.
Preprocessing involves normalization and (for training mode) random
perturbations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

ILSVRC2012 Dataset

The module data.ilsvrc2012_data contains a handler for the Imagenet
Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) dataset, a subset of
the ImageNet dataset:

http://www.image-net.org/challenges/LSVRC/2012/index

For more details on the dataset, please refer to:

Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, no. 3 (December 1, 2015):
211–52, https://doi.org/10.1007/s11263-015-0816-y

Note

In the current implementation, this handler will not download and extract
the dataset for you. You have to do this manually by following the
instructions of the README file (which is located in the same folder as this
file).

Note

We use the validation set as test set. A new (custom) validation set will
be created by taking the first [image: n] samples from each training class as
validation samples, where [image: n] is configured by the user.

Note

This dataset has not yet been prepared for Tensorflow use!

When using PyTorch, this class will create dataset classes
(torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset]) for you for the training, testing and
validation set. Afterwards, you can use these dataset instances to create data
loaders:

train_loader = torch.utils.data.DataLoader(
 ilsvrc2012_data.torch_train, batch_size=256, shuffle=True,
 num_workers=4, pin_memory=True)

You should then use these Pytorch data loaders rather than class internal
methods to work with the dataset.

PyTorch data augmentation is applied as defined by the method
ILSVRC2012Data.torch_input_transforms(). Images will be resized and
cropped to size 224 x 224.

	
class hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data(data_path, use_one_hot=False, num_val_per_class=0)

	Bases: LargeImgDataset

An instance of the class shall represent the ILSVRC2012 dataset.

The input data of the dataset will be strings to image files. The output
data corresponds to object labels according to the ILSVRC2012_ID - 1.

Note

This is different from many other ILSVRC2012 data handlers, where the
labels are computed based on the order of the training folder names
(which correspond to WordNet IDs (WNID)).

Note

The dataset has to be already downloaded and extracted before
this method can be called. See the local README file for details.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding. Note, class labels
correspond to the ILSVRC2012_ID minus 1 (from 0 to 999).

Note

This option does not influence the internal PyTorch
Dataset classes (e.g., cmp.
data.large_img_dataset.LargeImgDataset.torch_train),
that can be used in conjunction with PyTorch data loaders.

	num_val_per_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples per class.

Note

The actual ILSVRC2012 validation set is used as test set
by this data handler. Therefore, a new validation set is
constructed (if value greater than 0), using the same amount of
samples per class.
For instance: If value 50 is given, a validation set of size
50 * 1000 = 50,000 is constructed (these samples will be removed
from the training set).

Note

Validation samples use the same data augmentation pipeline
as test samples.

	
get_identifier()

	Returns the name of the dataset.

	
tf_input_map(mode='inference')

	Not impemented.

	
to_common_labels(outputs)

	Translate between label conventions.

Translate a given set of labels (that correspond to the
ILSVRC2012_ID (minus one) of their images) back to the labels
provided by the torchvision.datasets.ImageFolder class.

Note

This would be the label convention for ImageNet used by
PyTorch examples.

	Parameters:

	outputs – Targets (as integers or 1-hot encodings).

	Returns:

	The translated targets (if the targets where given as 1-hot
encodings, then this method also returns 1-hot encodings).

	
static torch_input_transforms()

	Get data augmentation pipelines for ILSVRC2012 inputs.

	Note, the augmentation is inspired by the augmentation proposed in:
	https://git.io/fjWPZ

	Returns:

	Tuple containing:

	train_transform: A transforms pipeline that applies random
transformations, normalizes the image and resizes/crops it
to a final size of 224 x 224 pixels.

	test_transform: Similar to train_transform, but no random
transformations are applied.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

MNIST Dataset

The module data.mnist_data contains a handler for the MNIST dataset.

The implementation is based on an earlier implementation of a class I used in
another project:

https://git.io/fNyQL

Information about the dataset can be retrieved from:

http://yann.lecun.com/exdb/mnist/

	
class hypnettorch.data.mnist_data.MNISTData(data_path, use_one_hot=False, validation_size=5000, use_torch_augmentation=False)

	Bases: Dataset

An instance of the class shall represent the MNIST dataset.

The constructor checks whether the dataset has been read before (a pickle
dump has been generated). If so, it reads the dump. Otherwise, it
reads the data from scratch and creates a dump for future usage.

Note

By default, input samples are provided in a range of [0, 1].

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_torch_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Apply data augmentation to inputs when
calling method data.dataset.Dataset.input_to_torch_tensor().

The augmentation will withening the inputs according to training
image statistics (mean: 0.1307, std: 0.3081). In training
mode, it will additionally apply random crops.

Note

If activated, the statistics of test samples are changed as
a normalization is applied.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

If enabled via constructor option use_torch_augmentation, input
images are preprocessed.
Preprocessing involves normalization and (for training mode) random
perturbations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
static plot_sample(image, label=None, interactive=False, file_name=None)

	Plot a single MNIST sample.

This method is thought to be helpful for evaluation and debugging
purposes.

Deprecated since version 1.0: Please use method data.dataset.Dataset.plot_samples() instead.

	Parameters:

	
	image – A single MNIST image (given as 1D vector).

	label – The label of the given image.

	interactive – Turn on interactive mode. Thus program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.

	file_name – (optional) If a file name is provided, then the image
will be written into a file instead of plotted to the screen.

	
static torch_input_transforms(use_random_hflips=False)

	Get data augmentation pipelines for MNIST inputs.

	Parameters:

	use_random_hflips (bool [https://docs.python.org/3/library/functions.html#bool]) – Also use random horizontal flips during
training.

Note

That should not be True for MNIST, since digits loose
there meaning when flipped.

	Returns:

	Tuple containing:

	train_transform: A transforms pipeline that applies random
transformations and normalizes the image.

	test_transform: Similar to train_transform, but no random
transformations are applied.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

Street View House Numbers (SVHN) Dataset

The module data.svhn_data contains a handler for the
SVHN [http://ufldl.stanford.edu/housenumbers] dataset.

The dataset was introduced in:

Netzer et al., Reading Digits in Natural Images with Unsupervised Feature Learning [http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf],
2011.

This module contains a simple wrapper from the corresponding
torchvision [https://pytorch.org/docs/master/torchvision/datasets.html#svhn]
class torchvision.datasets.SVHN to our dataset interface
data.dataset.Dataset.

	
class hypnettorch.data.svhn_data.SVHNData(data_path, use_one_hot=False, validation_size=0, use_torch_augmentation=False, use_cutout=False, include_train_extra=False)

	Bases: Dataset

An instance of the class shall represent the SVHN dataset.

Note

By default, input samples are provided in a range of [0, 1].

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_torch_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Note, this option currently only applies
to input batches that are transformed using the class member
input_to_torch_tensor() (hence, only available for
PyTorch, so far).

The augmentation will be identical to the one provided by class
data.cifar10_data.CIFAR10Data, except that during
training no random horizontal flips are applied.

Note

If activated, the statistics of test samples are changed as
a normalization is applied (identical to the of class
data.cifar10_data.CIFAR10Data).

	use_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether option apply_cutout should be set of
method torch_input_transforms(). We use cutouts of size
20 x 20 as recommended
here [https://arxiv.org/pdf/1708.04552.pdf].

Note

Only applies if use_data_augmentation is set.

	include_train_extra (bool [https://docs.python.org/3/library/functions.html#bool]) – The training dataset can be extended by
“531,131 additional, somewhat less difficult samples” (see
here [http://ufldl.stanford.edu/housenumbers]).

Note, as long as the validation set size is smaller than the
original training set size, all validation samples would be taken
from the original training set (and thus not contain those “less
difficult” samples).

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled.
Preprocessing involves normalization and (for training mode) random
perturbations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

The module udacity_ch2 contains a handler for the
Udacity Self-Driving Car Challenge 2 [https://medium.com/@maccallister.h/challenge-2-submission-guidelines-284ce6641c41#.az85snjmh], which contains
imagery from a car’s frontal center camera in combination with CAN recorded
steering angles (the actual dataset contains more information, but those
ingredients are enough for the steering angle prediction task).

Note

In the current implementation, this handler will not download and extract
the dataset for you. You have to do this manually by following the
instructions of the README file (which is located in the same folder as this
file).

When using PyTorch, this class will create dataset classes
(torch.utils.data.Dataset [https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset]) for you for the training, testing and
validation set. Afterwards, you can use these dataset instances to create data
loaders:

train_loader = torch.utils.data.DataLoader(
 udacity_ch2.torch_train, batch_size=256, shuffle=True,
 num_workers=4, pin_memory=True)

You should then use these Pytorch data loaders rather than class internal
methods to work with the dataset.

PyTorch data augmentation is applied as defined by the method
UdacityCH2Data.torch_input_transforms().

	
class hypnettorch.data.udacity_ch2.UdacityCh2Data(data_path, num_val=0)

	Bases: LargeImgDataset

An instance of the class is representing the Udacity Ch2 dataset.

The input data of the dataset will be strings to image files. The output
data corresponds to steering angles.

Note

The dataset has to be already downloaded and extracted before
this method can be called. See the local README file for details.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? The dataset
folder is expected to contain the subfolders Ch2_001 (test set)
and Ch2_002 (train and validation set). See README for details.

	num_val (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. The validation set
will be random subset of the training set. Validation samples are
excluded from the training set!

Note

Validation samples use the same data augmentation pipeline
as test samples.

	
get_identifier()

	Returns the name of the dataset.

	
property test_angles_available

	Whether the test angles are available.

Note

If not available, test angles will all be set to zero!

The original dataset comes only with test images. However, the test set
was later released too, which contains both images and angles. See the
README for details.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
tf_input_map(mode='inference')

	Not impemented.

	
static torch_input_transforms()

	Get data augmentation pipelines for Udacity Ch2 inputs.

	Returns:

	Tuple containing:

	train_transform: A transforms pipeline that resizes
images to 256 x 192 pixels and normalizes them.

	test_transform: Similar to train_transform.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

Sequential, custom and special datasets

	Custom and special datasets
	Continual Learning Datasets

	Timeseries Datasets
	Common Datasets

	Custom Datasets

	Continual Learning Datasets

See documentation of subpackages special and timeseries.

Custom and special datasets

Contents

	Custom and special datasets

	Continual Learning Datasets

	Toy (Regression) Problems

	2D Donut Dataset

	Gaussian Mixture via a set of Gaussian Datasets

	Gaussian Mixture Model Dataset

	1D Regression Dataset

	1D Regression Dataset with bimodal error

	Classification Tasks

	Permuted MNIST Dataset

	Split MNIST Dataset

	Split CIFAR-10/100 Dataset

Continual Learning Datasets

Toy (Regression) Problems

2D Donut Dataset

This data handler creates a synthetic toy problem comprising 2D annuli.

	
class hypnettorch.data.special.donuts.Donuts(centers=((0, 0), (0, 0)), radii=((3, 4), (9, 10)), num_train=100, num_test=100, use_one_hot=True, rseed=42)

	Bases: Dataset

Donut dataset handler.

Note, each donut prescribes a different class.

	Parameters:

	
	centers (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – List of tuples, each determining the center
of a donut.

	radii (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – List of tuples, each tuple defines the inner and
outer radius of a donut.

	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples per donut.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples per donut.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented as a
one-hot encoding.

	rseed (int [https://docs.python.org/3/library/functions.html#int]) – If None, the current random state of numpy is used
to generate the data. Otherwise, a new random state with the
given seed is generated.

	
get_identifier()

	Returns the name of the dataset.

	
plot_dataset(title, show=True, filename=None, interactive=False, figsize=(10, 6))

	Plot samples belonging to this dataset.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.plot_samples().

	
static sample_annulus(x_c, y_c, r_inner, r_outer, num=1, rand=None)

	Sample uniformly from an annulus.

Sample uniformly [image: (x, y)] satisfiying:

[image: (x-x_\text{c})^2 + (y-y_\text{c})^2 \leq r_\text{outer}^2]

and

[image: (x-x_\text{c})^2 + (y-y_\text{c})^2 > r_\text{inner}^2]

	Parameters:

	
	x_c (float [https://docs.python.org/3/library/functions.html#float]) – x-position of the center.

	y_c (float [https://docs.python.org/3/library/functions.html#float]) – y-position of the center.

	r_inner (float [https://docs.python.org/3/library/functions.html#float]) – Inner radius.

	r_outer (float [https://docs.python.org/3/library/functions.html#float]) – Outer radius.

	num (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to return.

	rand (numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState], optional) – Random state object
used for sampling.

	Returns:

	Array of shape [num, 2].

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

Gaussian Mixture via a set of Gaussian Datasets

The module data.special.gaussian_mixture_data contains a toy dataset
consisting of input data drawn from a 2D Gaussian distribution. Combining
several such datasets creates a Gaussian mixture (e.g., each mixture component
would be one dataset from class GaussianData).

	The dataset is inspired by the toy example provided in section 4.5 of
	https://arxiv.org/pdf/1606.00704.pdf

However, the mixture of Gaussians only determines the input domain x (which is
enough for a GAN dataset). Though, we also need to specify the output y.

For instance, each Gaussian bump could be the input domain of one task. Given
this input domain, the task would be to predict p(x), thus y = p(x).

In the case of small variances, the task can be detected from seeing the input x
alone. This allows us to predict task embeddings based on inputs, such that
there is no need to define the task embedding manually.

	
class hypnettorch.data.special.gaussian_mixture_data.GaussianData(mean=array([0, 0]), cov=array([[0.0025, 0.0], [0.0, 0.0025]]), num_train=100, num_test=100, map_function=None, rseed=None)

	Bases: Dataset

An instance of this class shall represent a regression task where the
input samples [image: x] are drawn from a Gaussian with given mean and
variance.

Due to plotting functionalities, this class only supports 2D inputs and
1D outputs.

Generate a new dataset.

The input data x for train and test samples will be drawn iid from the
given Gaussian. Per default, the map function is the probability
density of the given Gaussian: y = f(x) = p(x).

	Parameters:

	
	mean – The mean of the Gaussian.

	cov – The covariance of the Gaussian.

	num_train – Number of training samples.

	num_test – Number of test samples.

	map_function (optional) – A function handle that receives input
samples and maps them to output samples. If not specified, the
density function will be used as map function.

	rseed (int [https://docs.python.org/3/library/functions.html#int]) – If None, the current random state of numpy is used
to generate the data. Otherwise, a new random state with the
given seed is generated.

	
property cov

	Covariance matrix.

	
get_identifier()

	Returns the name of the dataset.

	
property mean

	Mean vector.

	
plot_dataset(show=True)

	Plot the whole dataset.

	Parameters:

	show (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the plot should be shown.

	Returns:

	The figure handle.

	
static plot_datasets(data_handlers, inputs=None, predictions=None, labels=None, show=True, filename=None, figsize=(10, 6))

	Plot several datasets of this class in one plot.

	Parameters:

	
	data_handlers – A list of GaussianData objects.

	inputs (optional) – A list of numpy arrays representing inputs for
each dataset.

	predictions (optional) – A list of numpy arrays containing the
predicted output values for the given input values.

	labels (optional) – A label for each dataset.

	show – Whether the plot should be shown.

	filename (optional) – If provided, the figure will be stored under
this filename.

	figsize – A tuple, determining the size of the
figure in inches.

	
plot_predictions(predictions, label='Pred', show_train=True, show_test=True)

	Plot the dataset as well as predictions.

	Parameters:

	
	predictions – A tuple of x and y values, where the y values are
computed by a trained regression network. Note, that x is
supposed to be 2D numpy array, whereas y is a 1D numpy array.

	label – Label of the predicted values as shown in the legend.

	show_train – Show train samples.

	show_test – Show test samples.

	
plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True, filename=None, interactive=False, figsize=(10, 6))

	Plot samples belonging to this dataset.

Note

Either outputs or predictions must be not None!

	Parameters:

	
	title – The title of the whole figure.

	inputs – A 2D numpy array, where each row is an input sample.

	outputs (optional) – A 2D numpy array of actual dataset targets.

	predictions (optional) – A 2D numpy array of predicted output
samples (i.e., output predicted by a neural network).

	num_samples_per_row – Maximum number of samples plotted
per row in the generated figure.

	show – Whether the plot should be shown.

	filename (optional) – If provided, the figure will be stored under
this filename.

	interactive – Turn on interactive mode. We mainly
use this option to ensure that the program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.
Note, if using the iPython inline backend, this option has no
effect.

	figsize – A tuple, determining the size of the
figure in inches.

	
hypnettorch.data.special.gaussian_mixture_data.get_gmm_tasks(means=[array([-4, -4]), array([-4, -2]), array([-4, 0]), array([-4, 2]), array([-4, 4]), array([-2, -4]), array([-2, -2]), array([-2, 0]), array([-2, 2]), array([-2, 4]), array([0, -4]), array([0, -2]), array([0, 0]), array([0, 2]), array([0, 4]), array([2, -4]), array([2, -2]), array([2, 0]), array([2, 2]), array([2, 4]), array([4, -4]), array([4, -2]), array([4, 0]), array([4, 2]), array([4, 4])], covs=[array([[0.0025, 0.0], [0.0, 0.0025]]), array([[0.0025, 0.0], [0.0, 0.0025]])], num_train=100, num_test=100, map_functions=None, rseed=None)

	Generate a set of data handlers (one for each task) of class
GaussianData.

	Parameters:

	
	means – The mean of each Gaussian.

	covs – The covariance matrix of each Gaussian.

	num_train – Number of training samples per task.

	num_test – Number of test samples per task.

	map_functions (optional) – A list of “map_functions”, one for each task.

	rseed (int [https://docs.python.org/3/library/functions.html#int]) – See argument rseed of class GaussianData. The
i-th dataset generated by this function will be passed the
the random state rseed+i is specified.

	Returns:

	A list of objects of class GaussianData.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Gaussian Mixture Model Dataset

The module data.special.gaussian_mixture_data is stemming from a
conditional view, where every mode in the Gaussian mixture is a separate task
(single dataset). Therefore, it provides N distinct data handlers when
having N distinct modes.

Unfortunately, this configuration is not ideal for unsupervised GAN training (as
we want to be able to provide batches that contain data from a mix of modes
without having to manually assemble these batches) or for training a classifier
for a GMM toy problem.

Therefore, this module provides a wrapper that converts a sequence of data
handlers of class data.special.gaussian_mixture_data.GaussianData
(i.e., a set of single modes) to a combined data handler.

Model description:

Let [image: x] denote the input data. The class GMMData assumes that
it’s input training data is drawn from the following Gaussian Mixture Model:

[image: p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x; \mu_k, \Sigma_k)]

with mixing coefficients [image: \pi_k], such that [image: \sum_k \pi_k = 1].

Note, it is up to the user of this class to provide appropriate training data
(only important to keep in mind if unequal train set sizes are provided via
constructor argument gaussian_datasets or if mixing_coefficients are
non-uniform).

Let [image: y] denote a [image: K]-dimensional 1-hot encoding, i.e.,
[image: y_k \in \{0, 1\}] and [image: \sum_k y_k = 1]. Thus, [image: y] is the
latent variable that we want to infer (e.g., the optimal classification label)
with marginal probabilities:

[image: p(y_k=1) = \pi_k]

The conditional likelihood of a component is:

[image: p(x \mid y_k=1) = \mathcal{N}(x; \mu_k, \Sigma_k)]

Using Bayes Theorem we obtain the posterior:

[image: p(y_k=1 \mid x) &= \frac{p(x \mid y_k=1) p(y_k=1)}{p(x)} \\ \ &= \frac{\pi_k \mathcal{N}(x; \mu_k, \Sigma_k)}{ \ \sum_{l=1}^K \pi_l \mathcal{N}(x; \mu_l, \Sigma_l)}]

	
class hypnettorch.data.special.gmm_data.GMMData(gaussian_datasets, classification=False, use_one_hot=False, mixing_coefficients=None)

	Bases: Dataset

Dataset with inputs drawn from a Gaussian mixture model.

An instance of this class combines several instances of class
data.special.gaussian_mixture_data.GaussianData into one data
handler. I.e., multiple gaussian bumps are combined to a Gaussian mixture
dataset.

Most importantly, the dataset can be turned into a classification task,
where the label corresponds to the ID of the Gaussian bump from which the
sample was drawn. Otherwise, the original outputs will remain.

Note

You can use function
data.special.gaussian_mixture_data.get_gmm_tasks() to create a set
of tasks to be passed as constructor argument gaussian_datasets.

	Parameters:

	
	gaussian_datasets (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of instances of class
data.special.gaussian_mixture_data.GaussianData.

	classification (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the original outputs of the datasets
will be omitted and replaced by the dataset index. Therefore, the
original regression datasets are combined to a single classification
dataset.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented as a
one-hot encoding. This option only applies if classification is
True.

	mixing_coefficients (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The mixing coefficients
[image: \pi_k] of the individual mixture components. If not
specified, [image: \pi_k] will be assumed to be
1. / self.num_modes.

[image: p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x; \mu_k, \Sigma_k)]

Note

Mixing coefficients have to sum to 1.

Note

If mixing coefficients are not uniform, then one has to
externally ensure that the training data is distributed
accordingly. For instance, if mixing_coefficients=[.1, .9],
then the second dataset passed via gaussian_datasets should
have 9 times more training samples then the first dataset.

	
estimate_distance(fake, component_densities=None, density_estimation='hist', eps=1e-05)

	This method estimates the distance/divergence of the empirical fake
distribution with the underlying true data disctribution.

Therefore, we utilize the fact that we know the data distribution.

The following distance/divergence measures are implemented:

	Symmetric KL divergence: The fake samples are used to estimate the
model density. The fake samples are used to estimate
[image: D_\text{KL}(\text{fake} \mid\mid \text{real})]. An additional
set of real samples is drawn from the training data to compute a
Monte Carlo estimate of
[image: D_\text{KL}(\text{real} \mid\mid \text{fake})].

Comment from Simone Surace about this approach: “Doing density
estimation first and then computing the integral is known to be
the wrong way to go (there is an entire literature about this
problem).” This should be kept in mind when using this estimate.

	Parameters:

	
	fake (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D numpy array, where each row is an input
sample (usually drawn from a generator network).

	component_densities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A 2D numpy array with
each row corresponding to a sample in fake and each column
corresponding to a mode in this dataset. Each entry represents
the density of the corresponding sample under the corresponding
mixture component. See return value responsibilities of
method estimate_mode_coverage().

	density_estimation – Which kind of method should be used to estimate
the model distribution (i.e., density of given samples under the
distribution estimated from those samples).
Available methods are:

	'hist': We estimate the fake density based on a normalized
2D histogram of the samples. We use the Square-root choice to
compute the number of bins per dimension.

	'gaussian': Uses the kernel density method 'gaussian'
from sklearn.neighbors.kde.KernelDensity.
Note, we don’t change the default `bandwidth` value!

	eps (float [https://docs.python.org/3/library/functions.html#float]) – We don’t allow densities to be smaller than this value
for numerical stability reasons (when computing the log).

	Returns:

	The estimated symmetric KL divergence.

	
estimate_mode_coverage(fake, responsibilities=None)

	Compute the mode coverage of fake samples as suggested in

https://arxiv.org/abs/1606.00704

This method will compute the responsibilities for each fake sample
towards each mixture component and assign each sample to the mixture
component with the highest responsibility. Mixture components that
get no fake sample assigned are considered dropped modes.

The paper referenced above used 10,000 fake samples (on their synthetic
dataset) to measure the mode coverage.

	Parameters:

	
	fake – A 2D numpy array, where each row is an input sample (usually
drawn from a generator network).

	responsibilities (optional) – The responsibilities of each fake
data point (may be unnormalized). A 2D numpy array with each
row corresponding to a sample in fake and each column
corresponding to a mode in this dataset.

	Returns:

	A tuple containing:

	num_covered: The number of modes that have at least one fake
sample with maximum responsibility being assigned to that mode.

	responsibilities: The given or computed responsibilities. If
computed by this method, the responsibilities will be
unnormalized, i.e., correspond to the densities per component of
this mixture model.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
get_identifier()

	Returns the name of the dataset.

	
get_input_mesh(x1_range=None, x2_range=None, grid_size=1000)

	Create a 2D grid of input values.

The default grid returned by this method will also be the default grid
used by the method plot_uncertainty_map().

Note

This method is only implemented for 2D datasets.

	Parameters:

	
	x1_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The min and max value for the first
input dimension. If not specified, the range will be
automatically inferred.

Automatical inference is based on the underlying data (train
and test). The range will be set, such that all data can be
drawn inside.

	x2_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Same as x1_range for the second
input dimension.

	grid_size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – How many input samples per dimension.
If an integer is passed, then the same number grid size will be
used for both dimension. The grid is build by equally spacing
grid_size inside the ranges x1_range and x2_range.

	Returns:

	Tuple containing:

	x1_grid (numpy.ndarray): A 2D array, containing the grid
values of the first dimension.

	x2_grid (numpy.ndarray): A 2D array, containing the grid
values of the second dimension.

	flattended_grid (numpy.ndarray): A 2D array, containing all
samples from the first dimension in the first column and all
values corresponding to the second dimension in the second column.
This format correspond to the input format as, for instance,
returned by methods such as
data.dataset.Dataset.get_train_inputs().

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property means

	2D array, containing the mean of each component in its rows.

	Type:

	np.ndarray

	
property num_modes

	The number of mixture components.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
plot_optimal_classification(title='Classification Map', input_mesh=None, mesh_modes=None, sample_inputs=None, sample_modes=None, sample_label=None, sketch_components=False, show=True, filename=None, figsize=(10, 6))

	Plot a color-coded grid on how to optimally classify for each input
value.

Note

Since the training data is drawn randomly, it might be that some
training samples have a label that doesn’t correpond to the optimal
label.

	Parameters:

	
	(....) – See arguments of method plot_uncertainty_map().

	mesh_modes (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – If not provided, then the
color of each grid position [image: x] is determined based on
[image: \arg\max_k \pi_k \mathcal{N}(x; \mu_k, \Sigma_k)].
Otherwise, the labeling provided here will determine the
coloring.

	
plot_real_fake(title, real, fake, show=True, filename=None, interactive=False, figsize=(10, 6))

	Useful method when using this dataset in conjunction with GAN
training. Plots the given real and fake input samples in a 2D plane.

	Parameters:

	
	(....) – See docstring of method
data.dataset.Dataset.plot_samples().

	real (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D numpy array, where each row is an input
sample. These samples correspond to actual input samples drawn
from the dataset.

	fake (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A 2D numpy array, where each row is an input
sample. These samples correspond to generated samples.

	
plot_samples(title, inputs, outputs=None, predictions=None, show=True, filename=None, interactive=False, figsize=(10, 6))

	Plot samples belonging to this dataset.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.plot_samples().

	
plot_uncertainty_map(title='Uncertainty Map', input_mesh=None, uncertainties=None, use_generative_uncertainty=False, use_ent_joint_uncertainty=False, sample_inputs=None, sample_modes=None, sample_label=None, sketch_components=False, norm_eps=None, show=True, filename=None, figsize=(10, 6))

	Draw an uncertainty heatmap.

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of plots.

	input_mesh (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The input mesh of the heatmap (see
return value of method get_input_mesh()). If not
specified, the default return value of method
get_input_mesh() is used.

	uncertainties (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – The uncertainties
corresponding to input_mesh. If not specified, then the
uncertainties will be computed based the entropy across
[image: k=1..K] for

[image: p(y_k = 1 \mid x) = \frac{ \ \pi_k \mathcal{N}(x; \mu_k, \Sigma_k)}{\ \sum_{l=1}^K \pi_l \mathcal{N}(x; \mu_l, \Sigma_l)}]

Note

The entropies will be normalized by the maximum uncertainty
-np.log(1.0 / self.num_modes).

	use_generative_uncertainty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the uncertainties
plotted by default (if uncertainties is left unspecified)
are not based on the entropy of the responsibilities
[image: p(y_k = 1 \mid x)], but are the densities of the
underlying GMM [image: p(x)].

	use_ent_joint_uncertainty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the uncertainties
plotted by default (if uncertainties is left unspecified)
are based on the entropy of [image: p(y, x)] at location
[image: x]:

[image: & - \sum_k p(x) p(y_k=1 \mid x) \log p(x) p(y_k=1 \mid x)\\\ =& -p(x) \sum_k p(y_k=1 \mid x) \log p(y_k=1 \mid x) - \ p(x) \log p(x)]

Note, we normalize [image: p(x)] by its maximum inside the chosen
grid. Hence, the plot depends on the chosen input_mesh. In
this way, [image: p(x) \in [0, 1]] and the second term
[image: -p(x) \log p(x) \in [0, \exp(-1)]] (note,
[image: -p(x) \log p(x)] would be negative for [image: p(x) > 1]).

The first term is simply the entropy of [image: p(y \mid x)]
scaled by [image: p(x)]. Hence, it shows where in the input space
are the regions where Gaussian bumps are overlapping (regions
in which data exists but multiple labels [image: y] are
possible).

The second term shows the boundaries of the data manifold. Note,
[image: -1 \log 1 = 0] and
[image: -\lim_{p(x) \rightarrow 0} p(x) \log p(x) = 0].

Note

This option is mutually exclusive with option
use_generative_uncertainty.

Note

Entropies of [image: p(y \mid x)] won’t be normalized in this
case.

	sample_inputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – Sample inputs. Can be
specified if a scatter plot of samples (e.g., train samples)
should be laid above the heatmap.

	sample_modes (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – To which mode do the samples
in sample_inputs belong to? If provided, then for each
sample in sample_inputs a number smaller than
num_modes is expected. All samples with the same mode
identifier are colored with the same color.

	sample_label (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If a label should be shown in the
legend for inputs sample_inputs.

	sketch_components (bool [https://docs.python.org/3/library/functions.html#bool]) – Sketch the mean and variance of each
component.

	norm_eps (float [https://docs.python.org/3/library/functions.html#float], optional) – If uncertainties are computed by this
method, then (normalized) densities for each x-value in the
input mesh have to be computed. To avoid division by zero,
a positive number norm_eps can be specified.

	(....) – See docstring of method
data.dataset.Dataset.plot_samples().

1D Regression Dataset

The module data.special.regression1d_data contains a data handler for a
CL toy regression problem. The user can construct individual datasets with this
data handler and use each of these datasets to train a model in a continual
leraning setting.

	
class hypnettorch.data.special.regression1d_data.ToyRegression(train_inter=[-10, 10], num_train=20, test_inter=[-10, 10], num_test=80, val_inter=None, num_val=None, map_function=<function ToyRegression.<lambda>>, std=0.0, perturb_test_val=False, rseed=None)

	Bases: Dataset

An instance of this class shall represent a simple regression task.

Generate a new dataset.

The input data x will be uniformly drawn for train samples and
equidistant for test samples. The user has to specify a function that
will map this random input data onto output samples y.

	Parameters:

	
	train_inter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A tuple, representing the interval from
which x samples are drawn in the training set.

train_inter may also be provided as a list of tuples, in
which case training samples will be distributed according to
the range covered by each tuple.

	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples.

	test_inter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple, representing the interval from which x
samples are drawn in the test set.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples.

	val_inter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – See parameter test_inter. If set,
this argument leads to the construction of a validation set.
Note, option num_val need to be specified as well.

	num_val (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of validation samples.

	map_function (func) – A function handle that receives input
samples and maps them to output samples.

	std (float [https://docs.python.org/3/library/functions.html#float] or func) – If not zero, Gaussian white noise with this std
will be added to the training outputs.

Heteroscedasticity can be realized by passing a function
[image: \sigma(x)] that describes the standard deviations at a
given location [image: x]. Note, this function may only outputs
numbers [image: \geq 0].

	perturb_test_val (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, the option std only
adds noise to the training data, not the validation or test
data. If this option is True, then also the validation
and test targets will be perturbed. This might be helpful for
measuring calibration.

	rseed (int [https://docs.python.org/3/library/functions.html#int]) – If None, the current random state of numpy is used
to generate the data. Otherwise, a new random state with the
given seed is generated.

	
get_identifier()

	Returns the name of the dataset.

	
plot_dataset(show=True)

	Plot the whole dataset.

	Parameters:

	show – Whether the plot should be shown.

	
static plot_datasets(data_handlers, inputs=None, predictions=None, labels=None, fun_xranges=None, show=True, filename=None, figsize=(10, 6), publication_style=False)

	Plot several datasets of this class in one plot.

	Parameters:

	
	data_handlers – A list of ToyRegression objects.

	inputs (optional) – A list of numpy arrays representing inputs for
each dataset.

	predictions (optional) – A list of numpy arrays containing the
predicted output values for the given input values.

	labels (optional) – A label for each dataset.

	fun_xranges (optional) – List of x ranges in which the true
underlying function per dataset should be sketched.

	show – Whether the plot should be shown.

	filename (optional) – If provided, the figure will be stored under
this filename.

	figsize – A tuple, determining the size of the figure in inches.

	publication_style – Whether the plots should be in publication style.

	
plot_predictions(predictions, label='Pred', show_train=True, show_test=True)

	Plot the dataset as well as predictions.

	Parameters:

	
	predictions – A tuple of x and y values, where the y values are
computed by a trained regression network.
Note, that we assume the x values to be sorted.

	label – Label of the predicted values as shown in the legend.

	show_train – Show train samples.

	show_test – Show test samples.

	
plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True, filename=None, interactive=False, figsize=(10, 6))

	Plot samples belonging to this dataset.

Note

Either outputs or predictions must be not None!

	Parameters:

	
	title – The title of the whole figure.

	inputs – A 2D numpy array, where each row is an input sample.

	outputs (optional) – A 2D numpy array of actual dataset targets.

	predictions (optional) – A 2D numpy array of predicted output
samples (i.e., output predicted by a neural network).

	num_samples_per_row – Maximum number of samples plotted
per row in the generated figure.

	show – Whether the plot should be shown.

	filename (optional) – If provided, the figure will be stored under
this filename.

	interactive – Turn on interactive mode. We mainly
use this option to ensure that the program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.
Note, if using the iPython inline backend, this option has no
effect.

	figsize – A tuple, determining the size of the
figure in inches.

	
property test_x_range

	The input range for test samples.

	
property train_x_range

	The input range for training samples.

	
property val_x_range

	The input range for validation samples.

1D Regression Dataset with bimodal error

The module data.special.regression1d_bimodal_data contains a data handler
for a CL toy regression problem. The user can construct individual datasets with
this data handler and use each of these datasets to train a model in a continual
learning setting.

	
class hypnettorch.data.special.regression1d_bimodal_data.BimodalToyRegression(train_inter=[-10, 10], num_train=20, test_inter=[-10, 10], num_test=80, val_inter=None, num_val=None, map_function=<function BimodalToyRegression.<lambda>>, alpha1=0.5, dist1=5, dist2=None, std1=1, std2=None, rseed=None, perturb_test_val=False)

	Bases: ToyRegression

An instance of this class shall represent a simple regression task, but
with a bimodal Gaussian mixture error distribution.

Generate a new dataset.

The input data x will be uniformly drawn for train samples and
equidistant for test samples. The user has to specify a function that
will map this random input data onto output samples y.

	Parameters:

	
	(....) – See docstring of class
data.special.regression_1d_data.ToyRegression.

	alpha1 – Mixture coefficient of the first Gaussian mode of the error.

	dist1 – The distance from zero of mean of the first Gaussian
component of the error.

	dist2 (optional) – The distance from zero of mean of the first
Gaussian component of the error. If None, the value of
dist1 will be taken.

	std1 – The standard deviation of the first Gaussian component of the
error.

	std2 (optional) – The standard deviation of the first Gaussian
component of the error. If None, the value of std1 will be
taken.

	
get_identifier()

	Returns the name of the dataset.

Classification Tasks

Permuted MNIST Dataset

The module data.special.permuted_mnist contains a data handler for the
permuted MNIST dataset.

	
class hypnettorch.data.special.permuted_mnist.PermutedMNIST(data_path, use_one_hot=True, validation_size=0, permutation=None, padding=0, trgt_padding=None)

	Bases: MNISTData

An instance of this class shall represent the permuted MNIST dataset,
which is the same as the MNIST dataset, just that input pixels are shuffled
by a random matrix.

Note

Image transformations are computed on the fly when transforming batches
to torch tensors. Hence, this class is only applicable to PyTorch
applications. Internally, the class stores the unpermuted images.

	Parameters:

	
	data_path – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot – Whether the class labels should be represented in a
one-hot encoding.

	validation_size – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	permutation – The permutation that should be applied to the dataset.
If None, no permutation will be applied. We expect a numpy
permutation of the form
np.random.permutation((28+2*padding)**2)

	padding – The amount of padding that should be applied to images.

Note

The padding is currently not reflected in the
:attr:`data.dataset.Dataset.in_shape attribute, as the padding
is only applied to torch tensors. See attribute
torch_in_shape.

	trgt_padding (int [https://docs.python.org/3/library/functions.html#int], optional) – If provided, trgt_padding fake classes
will be added, such that in total the returned dataset has
len(labels) + trgt_padding classes. However, all padded classes
have no input instances. Note, that 1-hot encodings are padded to
fit the new number of classes.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note, this method has been overwritten from the base class.

It applies zero padding and pixel permutations.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as PyTorch tensor.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
property permutation

	The permuation matrix that is applied to input images before they are
transformed to Torch tensors.

	
tf_input_map(mode='inference')

	Not implemented! The class currently does not support Tensorflow.

	
property torch_in_shape

	The input shape of images, similar to attribute in_shape.
In contrast to in_shape, this attribute reflects the padding that is
applied when calling
classifier.permuted_mnist.PermutedMNIST.input_to_torch_tensor().

	
static torch_input_transforms(permutation=None, padding=0)

	Transform MNIST images to PyTorch tensors.

	Parameters:

	
	permutation – A given permutation that should be applied to all
images.

	padding – Apply a given amount of zero padding.

	Returns:

	A transforms pipeline.

	
class hypnettorch.data.special.permuted_mnist.PermutedMNISTList(permutations, data_path, use_one_hot=True, validation_size=0, padding=0, trgt_padding=None, show_perm_change_msg=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A list of permuted MNIST tasks that only uses a single instance of class
PermutedMNIST.

An instance of this class emulates a Python list that holds objects of
class PermutedMNIST. However, it doesn’t actually hold several
objects, but only one with just the permutation matrix being exchanged
everytime a different element of this list is retrieved. Therefore, use
this class with care!

	As all list entries are the same PermutedMNIST object, one should
never work with several list entries at the same time!
-> Retrieving a new list entry will modify every previously
retrieved list entry!

	When retrieving a slice, a shallow copy of this object is created
(i.e., the underlying PermutedMNIST does not change) with
only the desired subgroup of permutations avaliable.

Why would one use this object? When working with many permuted MNIST tasks,
then the memory consumption becomes significant if one desires to hold all
task instances at once in working memory. An object of this class only needs
to hold the MNIST dataset once in memory. Just the number of permutation
matrices grows linearly with the number of tasks.

Caution

You may never use more than one entry of this class at the same
time, as all entries share the same underlying data object and
therewith the same permutation.

Note

The mini-batch generation process is maintained separately for every
permutation. Thus, the retrieval of mini-batches for different
permutations does not influence one another.

Example

You should never use this list as follows

dhandlers = PermutedMNISTList(permutations, '/tmp')
d0 = dhandlers[0]
Zero-th permutation is active ...
...
d1 = dhandlers[1]
First permutation is active for `d0` and `d1`!
Important, you may not use `d0` anymore, as this might lead to
undesired behavior.

Example

Instead, always work with only one list entry at a time. The following
usage would be correct

dhandlers = PermutedMNISTList(permutations, '/tmp')
d = dhandlers[0]
Zero-th permutation is active ...
...
d = dhandlers[1]
First permutation is active for `d` as expected.

	Parameters:

	
	(....) – See docstring of constructor of class PermutedMNIST.

	permutations – A list of permutations (see parameter permutation
of class PermutedMNIST to have a description of valid list
entries). The length of this list denotes the number of tasks.

	show_perm_change_msg – Whether to print a notification everytime the
data permutation has been exchanged. This should be enabled
during developement such that a proper use of this list is
ensured. Note You may never work with two elements of this
list at a time.

Split MNIST Dataset

The module data.special.split_mnist contains a wrapper for data
handlers for the SplitMNIST task.

	
class hypnettorch.data.special.split_mnist.SplitMNIST(data_path, use_one_hot=False, validation_size=1000, use_torch_augmentation=False, labels=[0, 1], full_out_dim=False, trgt_padding=None)

	Bases: MNISTData

An instance of the class shall represent a SplitMNIST task.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_torch_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – See docstring of class
data.mnist_data.MNISTData.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – The labels that should be part of this task.

	full_out_dim (bool [https://docs.python.org/3/library/functions.html#bool]) – Choose the original MNIST instead of the new
task output dimension. This option will affect the attributes
data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

	trgt_padding (int [https://docs.python.org/3/library/functions.html#int], optional) – If provided, trgt_padding fake classes
will be added, such that in total the returned dataset has
len(labels) + trgt_padding classes. However, all padded classes
have no input instances. Note, that 1-hot encodings are padded to
fit the new number of classes.

	
get_identifier()

	Returns the name of the dataset.

	
transform_outputs(outputs)

	Transform the outputs from the 10D MNIST dataset into proper labels
based on the constructor argument labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

	Parameters:

	outputs – 2D numpy array of outputs.

	Returns:

	2D numpy array of transformed outputs.

	
hypnettorch.data.special.split_mnist.get_split_mnist_handlers(data_path, use_one_hot=True, validation_size=0, use_torch_augmentation=False, num_classes_per_task=2, num_tasks=None, trgt_padding=None)

	This function instantiates 5 objects of the class SplitMNIST
which will contain a disjoint set of labels.

The SplitMNIST task consists of 5 tasks corresponding to the images with
labels [0,1], [2,3], [4,5], [6,7], [8,9].

	Parameters:

	
	data_path – Where should the MNIST dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot – Whether the class labels should be represented in a one-hot
encoding.

	validation_size – The size of the validation set of each individual
data handler.

	use_torch_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – See docstring of class
data.mnist_data.MNISTData.

	num_classes_per_task (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes to put into one data
handler. If 2, then every data handler will include 2 digits.

	num_tasks (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of data handlers that should be
returned by this function.

	trgt_padding (int [https://docs.python.org/3/library/functions.html#int], optional) – See docstring of class
SplitMNIST.

	Returns:

	A list of data handlers, each corresponding to a
SplitMNIST object.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Split CIFAR-10/100 Dataset

The module data.special.split_cifar contains a wrapper for data handlers
for the Split-CIFAR10/CIFAR100 task.

	
class hypnettorch.data.special.split_cifar.SplitCIFAR100Data(data_path, use_one_hot=False, validation_size=1000, use_data_augmentation=False, use_cutout=False, labels=range(0, 10), full_out_dim=False)

	Bases: CIFAR100Data

An instance of the class shall represent a single SplitCIFAR-100 task.

	Parameters:

	
	data_path – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	use_data_augmentation (optional) – Note, this option currently only
applies to input batches that are transformed using the class
member data.dataset.Dataset.input_to_torch_tensor()
(hence, only available for PyTorch).
Note, we are using the same data augmentation pipeline as for
CIFAR-10.

	use_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – See docstring of class
data.cifar10_data.CIFAR10Data.

	labels – The labels that should be part of this task.

	full_out_dim – Choose the original CIFAR instead of the the new
task output dimension. This option will affect the attributes
data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

	
get_identifier()

	Returns the name of the dataset.

	
transform_outputs(outputs)

	Transform the outputs from the 100D CIFAR100 dataset into proper
labels based on the constructor argument labels.

See data.special.split_mnist.SplitMNIST.transform_outputs() for
more information.

	Parameters:

	outputs – 2D numpy array of outputs.

	Returns:

	2D numpy array of transformed outputs.

	
class hypnettorch.data.special.split_cifar.SplitCIFAR10Data(data_path, use_one_hot=False, validation_size=1000, use_data_augmentation=False, use_cutout=False, labels=range(0, 2), full_out_dim=False)

	Bases: CIFAR10Data

An instance of the class shall represent a single SplitCIFAR-10 task.

Each instance will contain only samples of CIFAR-10 belonging to a subset
of the labels.

	Parameters:

	(....) – See docstring of class SplitCIFAR100Data.

	
get_identifier()

	Returns the name of the dataset.

	
transform_outputs(outputs)

	Transform the outputs from the 10D CIFAR10 dataset into proper labels
based on the constructor argument labels.

See data.special.split_mnist.SplitMNIST.transform_outputs() for
more information.

	Parameters:

	outputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2D numpy array of outputs.

	Returns:

	2D numpy array of transformed outputs.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
hypnettorch.data.special.split_cifar.get_split_cifar_handlers(data_path, use_one_hot=True, validation_size=0, use_data_augmentation=False, use_cutout=False, num_classes_per_task=10, num_tasks=6)

	This method will combine 1 object of the class
data.cifar10_data.CIFAR10Data and 5 objects of the class
SplitCIFAR100Data.

The SplitCIFAR benchmark consists of 6 tasks, corresponding to the images
in CIFAR-10 and 5 tasks from CIFAR-100 corresponding to the images with
labels [0-10], [10-20], [20-30], [30-40], [40-50].

	Parameters:

	
	data_path – Where should the CIFAR-10 and CIFAR-100 datasets
be read from? If not existing, the datasets will be downloaded
into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	validation_size – The size of the validation set of each individual
data handler.

	use_data_augmentation (optional) – Note, this option currently only
applies to input batches that are transformed using the class
member data.dataset.Dataset.input_to_torch_tensor()
(hence, only available for PyTorch).

	use_cutout (bool [https://docs.python.org/3/library/functions.html#bool]) – See docstring of class
data.cifar10_data.CIFAR10Data.

	num_classes_per_task (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes to put into one data
handler. For example, if 2, then every data handler will include
2 digits.

If 10, then the first dataset will simply be CIFAR-10.

	num_tasks (int [https://docs.python.org/3/library/functions.html#int]) – A number between 1 and 11 (assuming
num_classes_per_task == 10), specifying the number of data
handlers to be returned. If num_tasks=6, then there will be
the CIFAR-10 data handler and the first 5 splits of the CIFAR-100
dataset (as in the usual CIFAR benchmark for CL).

	Returns:

	(list) A list of data handlers. The first being an instance of class
data.cifar10_data.CIFAR10Data and the remaining ones being an
instance of class SplitCIFAR100Data.

Timeseries Datasets

Contents

	Timeseries Datasets

	Common Datasets

	Dataset for the sequential copy task

	Multilingual universal Dependencies Dataset

	Dataset for the Audioset task

	Stroke MNIST (SMNIST) Dataset

	Custom Datasets

	Dataset from random recurrent teacher networks

	Continual Learning Datasets

	Set of cognitive tasks

	Sequence of Stroke MNIST Samples (SeqSMNIST) Dataset

	Split Audioset Dataset

	Split SMNIST Dataset

Common Datasets

Dataset for the sequential copy task

A data handler for the copy task as described in:

https://arxiv.org/pdf/1410.5401.pdf

A typical usecase of this dataset is in an incremental learning setting. For
instance, a sequence of tasks with increasing lengths can be used in curriculum
learning or continual learning.

The class contains a lot of options to modify the basic copy task. Many of those
variations target the usecase continual learning (rather than curriculum
learning) by providing sets of distinct tasks with comparable difficulty. Note,
these variations typically extend the required input processing and are not
limited to plain copying.

	
class hypnettorch.data.timeseries.copy_data.CopyTask(min_input_len, max_input_len, seq_width=7, out_width=-1, num_train=100, num_test=100, num_val=None, pat_len=-1, scatter_pattern=False, permute_width=False, permute_time=False, permute_xor=False, permute_xor_iter=1, permute_xor_separate=False, random_pad=False, pad_after_stop=False, pairwise_permute=False, revert_output_seq=False, rseed=None, rseed_permute=None, rseed_scatter=None)

	Bases: SequentialDataset

Data handler for the sequential copy task.

In this task, a binary vector is presented as input, and the network has
to learn to copy it. Such that the network cannot rely on intermediate
information, there is a delay between the end of the input presentation and
the output generation. The end of the input sequence is delimited by a
binary bit, which is always zero except when the sequence finishes. This
flag should not be copied.

An instance of this class will represent copy task patterns of random
length (by default) but fixed width (but see option out_width). The
length of input patterns will be sampled uniformly from the interval
[min_input_len, max_input_len]. Note that the actual length of the
patterns pat_len might be smaller in the case where there are a certain
number of zero-valued timesteps within the input.
As such, every sequence is characterised by the following values:

	pat_len: the actual length of the binary pattern to be copied.
Across this duration, half the pixels have value of 1 and the other
half have value 0.

	input_len: the length of input presentation up until the stop
flag. It is equal to the pattern length plus the number of zero-valued
timesteps.

	seq_len: the length of the entire sequences, including input
presentation, stop flag and output generation. Therefore it is equal
to the input length, plus one (stop flag), plus the pattern length
(since during output reconstruction we don’t care about reconstructing
the zero-valued part of the input).

Caution

Manipulations such as permutations or scattering/masking will be applied
online in output_to_torch_tensor().

	Parameters:

	
	min_input_len (int [https://docs.python.org/3/library/functions.html#int]) – The minimum length of an input sequence.

Note

The input length is the length of the presented input before the
stop flag. It might include both a pattern to be copied and a
set of zero-valued timesteps that do not need to be
reconstructed.

	max_input_len (int [https://docs.python.org/3/library/functions.html#int]) – The maximum length of a pattern.

	seq_width (int [https://docs.python.org/3/library/functions.html#int]) – The width if each pattern.

Note

Each pattern will have a certain length (across time) and
a certain width.

	out_width (int [https://docs.python.org/3/library/functions.html#int], optional) – If specified, a number smaller than
seq_width is expected. In this case, only the first
out_width input features are expected to be copied (i.e., only
those occur as target output features).

	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples.

	num_val (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of validation samples.

	pat_len (int [https://docs.python.org/3/library/functions.html#int], optional) – The actual length of the pattern within the
input sequence (excluding zero-valued timesteps). By default, the
value is -1 meaning that the pattern length is identical to the
input length, and there are no zeroed timesteps. For other values,
the input sequences will be zero-padded after pat_len timesteps.
Therefore, the input sequence lengths remain the same, but the
actual duration of the patterns is reduced. This manipulation is
useful to decouple sequence length and memory requirement for
analysis.

Note

We define the number of timesteps that are not zero, and
therefore for values different than -1 with the current
implementation we will obtain patterns of identical length
(but different input sequence length).

	scatter_pattern (bool [https://docs.python.org/3/library/functions.html#bool]) – Option only compatible with pat_len != -1.
If activated, the pattern is not concentrated at the beginning of
the input sequence. Instead, the whole input sequence will be filled
with a random pattern (i.e., no padding is used) but only a fixed
and random (see option rseed_scatter) number of timesteps from
the input sequence are considered to create an output sequence of
length pat_len.

	permute_width (boolean, optional) – If enabled, the generated pattern
will be permuted along the width axis.

	permute_time (boolean, optional) – If enabled, the generated pattern
will be permuted along the temporal axis.

	permute_xor (bool [https://docs.python.org/3/library/functions.html#bool]) – Only applicable if permute_width or
permute_time is True. If True, the permuted and
unpermuted output pattern will be combined to a new output pattern
via a logical xor operation.

	permute_xor_iter (int [https://docs.python.org/3/library/functions.html#int]) – Only applicable if permute_xor is set.
If True, the internal permutation is applied iteratively and
XOR-ed with the previous target output to obtain a final target
output.

	permute_xor_separate (bool [https://docs.python.org/3/library/functions.html#bool]) – Only applicable if permute_xor is set
and permute_xor_iter > 1. If True, a separate permutation
matrix is used per iteration described by permute_xor_iter.
In this case, we the input pattern is permute_xor_iter times
permuted via a separate permutation matrix and the resulting
patterns are sequentially XOR-ed with the original input pattern.

Hence, this can be viewed as follows: permute_xor_iter random
input pixels are assigned to each output pattern pixel. This
output pattern pixel will be 1 if and only if the number of ones
in those input pixels is odd.

	random_pad (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If activated, the truncated part of the
input (see option pat_len) will be left as a random pattern, and
not set to zero.
Note that the loss computation is unaffected by this option.

	pad_after_stop (bool [https://docs.python.org/3/library/functions.html#bool]) – This option will affect how option pat_len is
handled and therefore can only be used if pat_len is set.
If True, pat_len will determine the length of the input
sequence (no padding applied before the stop bit). Therefore, the
padding is moved to after the stop bit and therewith part of the
target output. I.e., the original input sequence length determines
the output sequence length which consists of zero padding and the
input pattern of length pat_len.
Note, in this case, the options min_input_len and
max_input_len actually apply solely to the output.

	pairwise_permute (bool [https://docs.python.org/3/library/functions.html#bool], optional) – This option is only used if
some permutation is activated. If enabled, it will force the
permutation to be a pairwise switch between successive pixels.
Note that this operation is deterministic, and will therefore be
identical for different tasks, if more than one task is generated.

	revert_output_seq (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If enabled, it will revert output
sequences along the time dimension. Note that this operation is
deterministic, and will therefore be identical for different tasks,
if more than one task is generated.

	rseed (int [https://docs.python.org/3/library/functions.html#int], optional) – If None, the current random state of numpy
is used to generate the data. Otherwise, a new random state with the
given seed is generated.

	rseed_permute (int [https://docs.python.org/3/library/functions.html#int], optional) – Random seed for performing permutations
of the copy patterns. Only used if option permute_width or
permute_time are activated. If None, the current random
state of numpy is used to generate the data. Otherwise, a new random
state with the given seed is generated.

	rseed_scatter (int [https://docs.python.org/3/library/functions.html#int], optional) – See option rseed. Random seed for
determining which timesteps of the input sequence to use for the
output pattern if option scatter_pattern is activated.

	
static create_permutation_matrix(permute_time, permute_width, pat_len_perm, seq_width, rstate_permute, pairwise_permute=False, revert_output_seq=False)

	Create a permutation matrix.

	Parameters:

	
	pairwise_permute (boolean, optional) – If True, the permutations
correspond to switching the position of neighboring pixels.
For example 1234567 would become 2143657. If the number of
timesteps is odd, the last timestep is left unmoved.

	revert_output_seq (boolean, optional) – If True, the output sequences
will be inverted along the time dimension. I.e. a pattern
1234567 would become 7654321.

	
get_identifier()

	Returns the name of the dataset.

	
get_out_pattern_bounds(sample_ids)

	Get the start time step and length of the output pattern within
the sequence.

Note, input sequences may have varying length (even though they are
padded to the same length). Assume we are considering a input of
length 7, meaning that the total sequence would have the length
15 = 7 + 1 + 7 (input pattern presentation, stop bit, output pattern
copying). In addition, assume that the maximum input length is 10
(hence, the maximum input length is 21 = 10 + 1 + 10).
In this case, all sequences are padded to have length 21. For the sample
in consideration (with input length 7), the output pattern sequence
starts at index 8 and has a length of 7, or less, if the input contains
some zeroed values. Hence, these two number would be returned for this
sample.

	Parameters:

	(....) – See docstring of method
data.sequential_data.SequentialDataset.get_in_seq_lengths().

	Returns:

	Tuple containing:

	start_inds (numpy.ndarray): 1D array with the same length as
sample_ids, which contains the start index for output pattern
in a given sample.

	lengths (numpy.ndarray): 1D array containing the lengths of
the pattern per given sample.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
get_zeroed_ts(sample_ids)

	Get the number of zeroed timesteps in each input pattern.

Note, if scatter_pattern was activated in the constructor, then this
number does not refer to the number of padded steps in the input
sequence but rather to the number of unused steps in the input sequence.
However, those unused steps will still contain random patterns.
Similarly, if argument random_pad is used.

Note, if pad_after_stop was activated, then the zeroed timesteps
actually occur after the stop bit, i.e., in the output part of the
sequence.

	Parameters:

	(....) – See docstring of method get_in_seq_lengths().

	Returns:

	A 1D numpy array.

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
output_to_torch_tensor(*args, **kwargs)

	Similar to method input_to_torch_tensor(), just for dataset
outputs.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.output_to_torch_tensor().

	Returns:

	The given input y as PyTorch tensor. It has
dimensions [T, B, *out_shape], where T is the number of time
steps (see attribute max_num_ts_out), B is the batch
size and out_shape refers to the output feature shape, see
data.dataset.Dataset.out_shape.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
property permutation

	Getter for attribute permutation_

Multilingual universal Dependencies Dataset

A data handler for the multilingual universal dependencies dataset:

https://universaldependencies.org/

This dataset is a Part-of-Speech tagging dataset that assigns to each token in
a sentence one of a set of universal syntactic tags. We adapt this dataset
to a Continual Learning scenario by considering Part-of-Speech tagging in
different languages as different tasks.

	
class hypnettorch.data.timeseries.mud_data.MUDData(task_data, vocabulary=None, tagset=None)

	Bases: SequentialDataset

Datahandler for the multilingual universal dependencies dataset.

	Parameters:

	
	task_data – A preprocessed dataset structure. Please use function
get_mud_handlers() to create instances of this class.

	vocabulary (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The vocabular, i.e., a list of
words that allows us to decode input sentences.

	tagset (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The PoS tagset.

	
decode_batch(inputs, outputs, sample_ids=None)

	Decode a batch of input and output samples into strings.

This method translates a batch of input and output sequences (consisting
of vocabulary and tagset indices) into actual sentences consisting of
strings.

Note

This method is only applicable if vocabulary and tagset
were provided to the constructor.

	Parameters:

	
	inputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Input samples as provided to
or returned from method input_to_torch_tensor().

	outputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Output samples as provided
to or returned from method output_to_torch_tensor().

	sample_ids (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – See method
train_ids_to_indices(). If provided, the returned
sentences are cropped to the actual sequence length.

	Returns:

	Tuple containing:

	in_words (list): List of list of strings, where each string
corresponds to a word in the corresponding input sentence of
inputs.

	out_tags (list): List of list of strings, where each string
corresponds to the output tag corresponding to the tag ID read
from outputs.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

Note

If sample_ids are provided, then padding will be reduced
according to the sample within the minibatch with the longest
sequence length.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	See docstring of method
data.sequential_dataset.SequentialDataset.input_to_torch_tensor().

	Return type:

	(torch.LongTensor)

	
output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	Identical to method data.sequential_dataset.SequentialDataset.output_to_torch_tensor().

However, if sample_ids are provided, then the same padding behavior
as elicited by method input_to_torch_tensor() is performed.

	
hypnettorch.data.timeseries.mud_data.get_mud_handlers(data_path, num_tasks=5)

	This function instantiates num_tasks objects of the class
MUDData each of which will contain a PoS dataset for a different
language.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – See argument data_path of class
data.timeseries.smnist_data.SMNISTData. If not existing,
the dataset will be downloaded into this folder.

	num_tasks (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of data handlers that should be
returned by this function.

	Returns:

	A list of data handlers, each corresponding to an object of
class MUDData object.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Dataset for the Audioset task

A data handler for the audioset dataset taken from:

https://research.google.com/audioset/download.html

Data were preprocessed with the script
data.timeseries.structure_audioset and then uploaded to
dropbox [https://www.dropbox.com/s/07dfeeuf5aq4w1h/audioset_data_balanced?dl=1]. If this link becomes invalid, the data has to
be preprocessed from scratch.

	
class hypnettorch.data.timeseries.audioset_data.AudiosetData(data_path, use_one_hot=True, validation_size=0, target_per_timestep=True, rseed=None)

	Bases: SequentialDataset

Datahandler for the audioset task.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples.

	target_per_timestep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If activated, the one-hot
encoding of the current image will be copied across the entire
sequence. Else, there is a single target for the entire
sequence (rather than one per timestep.

	rseed (int [https://docs.python.org/3/library/functions.html#int], optional) – If None, the current random state of numpy
is used to select a validation set from the training data.
Otherwise, a new random state with the given seed is generated.

	
get_identifier()

	Returns the name of the dataset.

Stroke MNIST (SMNIST) Dataset

A data handler for the stroke mnist data as discribed here:

https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data/

The data was preprocessed with the script
data.timeseries.preprocess_smnist and then uploaded to
dropbox [https://www.dropbox.com/s/sadzc8qvjvexdtx/ss_mnist_data?dl=1]. If
this link becomes invalid, the data has to be preprocessed from scratch.

	
class hypnettorch.data.timeseries.smnist_data.SMNISTData(data_path, use_one_hot=False, validation_size=0, target_per_timestep=True)

	Bases: SequentialDataset

Datahandler for stroke MNIST.

Note

That the outputs are always provided as one-hot encodings of duration
equal to one. One can decide to make these targets span the entirety of
the sequence (by repeating it over timesteps) by setting
target_per_timestep to True.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taking from the training set (the first [image: n]
samples).

	target_per_timestep (bool [https://docs.python.org/3/library/functions.html#bool]) – If activated, the one-hot
encoding of the current image will be copied across the entire
sequence. Else, there is a single target for the entire
sequence (rather than one per timestep.

	
get_identifier()

	Returns the name of the dataset.

Custom Datasets

Dataset from random recurrent teacher networks

We consider a student-teacher setup. The dataset is meant for continual
learning, such that an individual teacher (individual task) is used to determine
the computation of a subspace of the activations of a recurrent student network.

This is a synthetic dataset that will allow the manual construction of the
optimal student network that solves all tasks simultanously. As such, this
student network can be compared to trained networks (either continually or in
parallel on multiple tasks).

To be more precise, we set the teacher to be an Elman-type recurrent network
(see mnets.simple_rnn.SimpleRNN):

[image: r_t^{(k)} = \sigma (A^{(k)} r_{t-1}^{(k)} + x_t) \\ s_t^{(k)} = \sigma (B^{(k)} r_t^{(k)}) \\ t_t^{(k)} = C^{(k)} s_t^{(k)}]

Where [image: k] is a unique task identifier (in the context of multiple
teachers), [image: x_t] is the network input at time [image: t], the recurrent
state is initialized at zero [image: r_0^{(k)} = 0] and [image: \sigma()] is a
user-defined non-linearity. The non-linear output computation [image: s_t^{(k)}]
is optional.

We assume an input [image: x_t \in \mathbb{R}^{n_\text{in}}] and a target
dimensionality of [image: n_\text{out}].
[image: A^{(k)} \in \mathbb{R}^{n_\text{in} \times n_\text{in}}],
[image: B^{(k)} \in \mathbb{R}^{n_\text{in} \times n_\text{in}}] and
[image: C^{(k)} \in \mathbb{R}^{n_\text{out} \times n_\text{in}}] are random
matrices that determine the teacher network’s input-output mapping.

Having a task setup like this one can manually construct an RNN network that
can solve multiple of such tasks to perfection (assuming a task-specific output
head). For instance, consider the following Elman-type RNN with task-specific
output head.

[image: h_t = \sigma (W_{hh} h_{t-1} + W_{ih} x_t + b_h) \\ o_t = \sigma (W_{ho} h_t + b_o) \\ y_t^{(k)} = W^{(k)} o_t + b^{(k)}]

With [image: h_t \in \mathbb{R}^{n_\text{h}}] being the hidden state (we also
assume [image: o_t \in \mathbb{R}^{n_\text{h}}]).

We can assign this network the following weights to ensure that all [image: K]
tasks are solved to perfection:

	[image: b_h, b_o, b^{(k)} = 0]

	[image: W_{ih} = \begin{pmatrix} I \\ \vdots \\ I \\ O \end{pmatrix}] where
[image: I \in \mathbb{R}^{n_\text{in} \times n_\text{in}}] refers to the
identity matrix that simply copies the input into separate subspaces of the
hidden state

	The hidden-to-hidden weights would be block diagonal:

[image: W_{hh} = \begin{pmatrix} A^{(1)} & & & \\ & \ddots & & \\ & & A^{(K)} & \\ & & & O \end{pmatrix}]

	The hidden-to-output weights would be block diagonal:

[image: W_{ho} = \begin{pmatrix} B^{(1)} & & & \\ & \ddots & & \\ & & B^{(K)} & \\ & & & O \end{pmatrix}]

	The task-specific output matrix would be

[image: W^{(k)} = \begin{pmatrix} O & \hdots & C^{(k)} & \hdots & O \end{pmatrix}]

	
class hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher(num_train=1000, num_test=100, num_val=None, n_in=7, n_out=7, sigma='tanh', mat_A=None, mat_B=None, mat_C=None, orth_A=False, rank_A=-1, max_sv_A=-1.0, no_extra_fc=False, inputs=None, input_range=(-1, 1), n_ts_in=10, n_ts_out=-1, rseed=None)

	Bases: SequentialDataset

Create a dataset from a random recurrent teacher.

	Parameters:

	
	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples.

	num_val (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of validation samples.

	n_in (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of inputs [image: x_t].

	n_out (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of outputs [image: y_t^{(k)}].

	sigma (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the nonlinearity [image: \sigma()] to be used.

	'linear'

	'sigmoid'

	'tanh'

	mat_A (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A numpy array of shape
[n_in, n_in] representing matrix [image: A^{(k)}]. If not
specified, a random matrix will be generated.

	mat_B (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A numpy array of shape
[n_in, n_in] representing matrix [image: B^{(k)}]. If not
specified, a random matrix will be generated.

	mat_C (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – A numpy array of shape
[n_out, n_in] representing matrix [image: C^{(k)}]. If not
specified, a random matrix will be generated.

	orth_A (bool [https://docs.python.org/3/library/functions.html#bool]) – If [image: A^{(k)}] is randomly generated and this option
is activated, then [image: A^{(k)}] will be initialized as an
orthogonal matrix.

	rank_A (int [https://docs.python.org/3/library/functions.html#int], optional) – The rank of the randomly generated matrix
[image: A^{(k)}]. Note, this option is mutually exclusive with
option orth_A.

	max_sv_A (float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum singular value of the randomly
generated matrix [image: A^{(k)}]. Note, this option is mutually
exclusive with option orth_A.

	no_extra_fc – If True, the hidden fully-connected layer using matrix
[image: B^{(k)}] will be omitted when computed targets from the
teacher. Hence, the teacher computation becomes:

[image: r_t^{(k)} = \sigma (A^{(k)} r_{t-1}^{(k)} + x_t) \\ t_t^{(k)} = C^{(k)} r_t^{(k)}]

	inputs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – The inputs [image: x_t] to be used.
Has to be an array of shape [n_ts_in, N, n_in] with
N = num_train + num_test + (0 if num_val is None else num_val).

	input_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of integers. Used as ranges for a uniform
distribution from which input samples [image: x_t] are drawn.

	n_ts_in (int [https://docs.python.org/3/library/functions.html#int]) – The number of input timesteps.

	n_ts_out (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of output timesteps. Can be greater
than n_ts_in. In this case, the inputs at time greater than
n_ts_in will be zero.

	rseed (int [https://docs.python.org/3/library/functions.html#int], optional) – If None, the current random state of numpy
is used to generate the data. Otherwise, a new random state with the
given seed is generated.

	
static construct_ideal_student(net, dhandlers)

	Set the weights of an RNN such that it perfectly solves all tasks
represented by the teachers in dhandlers.

Note

This method only works properly if the RNN net is properly setup
such that its computation resembles the target computation of the
individual teachers. I.e., an ideal student can be constructed by
only modifying the weights.

	Parameters:

	
	net (mnets.simple_rnn.SimpleRNN) – The student RNN whose weights will
be overwritten. Importantly, this method does not ensure that
the teacher computation is compatible with the given student
network.

Note

The internal weights of the network are modified in-place.

	dhandlers (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of datasets from teachers (i.e., instances
of class RndRecTeacher). The RNN net must have at
least as many output heads as len(dhandlers).

	
get_identifier()

	Returns the name of the dataset.

	
property mat_A

	The teacher matrix [image: A^{(k)}].

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property mat_B

	The teacher matrix [image: B^{(k)}].

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property mat_C

	The teacher matrix [image: C^{(k)}].

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Continual Learning Datasets

Set of cognitive tasks

A data handler for cognitive tasks as implemented in Masse et al (PNAS). The
user can construct individual datasets with this data handler and use each of
these datasets to train a model in a continual leraning setting.

	
class hypnettorch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks(task_id=0, num_train=80, num_test=20, num_val=None, rstate=None)

	Bases: Dataset

An instance of this class shall represent a one of the 20 cognitive
tasks.

Generate a new dataset.

We use the MultiStimulus class from Masse el al. to genereate
the inputs and outputs of different cognitive tasks in accordance with
the data handling structures of the hnet code base.

Note that masks (part of the Masse et al. trial generator) will be
handled independently of this data handler.

	Parameters:

	
	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples.

	num_val (optional) – Number of validation samples.

	rstate – If None, the current random state of numpy is used to
generate the data.

	
get_identifier()

	Returns the name of the dataset.

	
input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	This method can be used to map the internal numpy arrays to PyTorch
tensors.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.input_to_torch_tensor().

	Returns:

	The given input x as 3D PyTorch tensor. It has
dimensions [T, B, N], where T is the number of time steps
per stimulus, B is the batch size and N the number of input
units.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)

	Similar to method input_to_torch_tensor(), just for dataset
outputs.

	Parameters:

	(....) – See docstring of method
data.dataset.Dataset.output_to_torch_tensor().

	Returns:

	A tensor of shape [T, B, C], where T is the
number of time steps per stimulus, B is the batch size and C
the number of classes.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

Sequence of Stroke MNIST Samples (SeqSMNIST) Dataset

A data handler to generate a set of sequential stroke MNIST tasks for continual
learning. The used stroke MNIST data was already preprocessed with the script
data.timeseries.preprocess_smnist (see also the corresponding data
handler in data.timeseries.smnist_data).

The task

Given a sequence of two smnist digits of length n (e.g. 2,5,5,2,2 with
n=5), classify which of the 2**n possible binary sequences (classes) the
presented sequence belongs to. E.g., for n=3 the number of classes would be
8 (corresponding to all possible sequences with two digits (0 and 1
here): 000, 001, 010, 100, 011, 110, 101, 111.

The individual tasks of the task family differ in which digits are used to
generate the binary sequences. Considering all possible pairs of digits we
can generate (10**2-10) / 2 = 45 tasks.

	
class hypnettorch.data.timeseries.seq_smnist.SeqSMNIST(data_path, use_one_hot=True, num_train=1600, num_test=400, num_val=0, target_per_timestep=True, sequence_length=4, digits=(0, 1), two_class=False, upsample_control=False, fix_class_partition=False, rseed=None)

	Bases: SequentialDataset

Datahandler for one sequential stroke MNIST task (as described above).

Note

That the outputs are always provided as one-hot encodings of duration
equal to one. One can decide to make these targets span the entirety of
the sequence (by repeating it over timesteps) by setting
target_per_timestep to True.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be
represented in a one-hot encoding.

	num_train (int [https://docs.python.org/3/library/functions.html#int]) – Number of training samples to be generated.

	num_test (int [https://docs.python.org/3/library/functions.html#int]) – Number of test samples to be generated.

	num_val (int [https://docs.python.org/3/library/functions.html#int]) – Number of validation samples to be generated.

	target_per_timestep (bool [https://docs.python.org/3/library/functions.html#bool]) – If activated, the one-hot
encoding of the current image will be copied across the entire
sequence. Else, there is a single target for the entire
sequence (rather than one per timestep.

	sequence_length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the binary sequence to be
classified. This also affects the number of classes which is
2**n.

	digits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The two digits that shall be used for generating the
binary sequence.

	two_class (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, instead of classifying each possible
sequence individually, sequences are randomly grouped into two
classes. This makes the number of classes (and therefore the chance
level) independent of the sequence length.

	upsample_control (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, instead of building sequences
of digits, we upsample single digits by a factor given by
seq_len.

	fix_class_partition (bool [https://docs.python.org/3/library/functions.html#bool]) – TODO

	rseed (int [https://docs.python.org/3/library/functions.html#int]) – Seed for numpy random state.

	
get_identifier()

	Returns the name of the dataset.

Split Audioset Dataset

The module data.timeseries.split_audioset contains a wrapper for data
handlers for the SplitAudioset task.
It is based on the module data.special.split_mnist.

	
class hypnettorch.data.timeseries.split_audioset.SplitAudioset(data_path, use_one_hot=True, validation_size=1000, target_per_timestep=True, rseed=None, labels=[0, 1], full_out_dim=False)

	Bases: AudiosetData

An instance of the class shall represent a SplitAudioset task.

	Parameters:

	
	(....) – See docstring of class
data.timeseries.audioset_data.AudiosetData.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the validation set of each individual
data handler.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – The labels that should be part of this task.

	full_out_dim (bool [https://docs.python.org/3/library/functions.html#bool]) – Choose the original Audioset labels instead of
the new task output dimension. This option will affect the
attributes data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

	
get_identifier()

	Returns the name of the dataset.

	
transform_outputs(outputs)

	Transform the outputs from the 100D Audioset dataset into proper
labels based on the constructor argument labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,…,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

	Parameters:

	outputs – 2D numpy array of outputs.

	Returns:

	2D numpy array of transformed outputs.

	
hypnettorch.data.timeseries.split_audioset.get_split_audioset_handlers(data_path, use_one_hot=True, validation_size=0, target_per_timestep=True, num_classes_per_task=10, num_tasks=5, rseed=None)

	This function instantiates num_tasks objects of the class
AudiosetData which will contain a disjoint set of labels.

The SplitAudioset task consists of num_tasks tasks which consist of a
classification problem with num_classes_per_task classes from our
preprocessed Audioset data set.

	Parameters:

	
	(....) – See docstring of class
data.timeseries.audioset_data.AudiosetData.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the validation set of each individual
data handler.

	num_classes_per_task (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes to put into one data
handler. If 2, then every data handler will include 2 classes.

	num_tasks (int [https://docs.python.org/3/library/functions.html#int]) – The number of data handlers that should be
returned by this function.

	rseed (int [https://docs.python.org/3/library/functions.html#int], optional) – The rseed is passed when constructing
instances of class SplitAudioset. In addition, it is used
to shuffle the classes before splitting Audioset into tasks.

	Returns:

	A list of data handlers, each corresponding to a
SplitAudioset object.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Split SMNIST Dataset

The module data.timeseries.split_smnist contains a wrapper for data
handlers for a set of SplitSMNIST tasks (a partitioning of classes from the
data.timeseries.smnist_data.SMNISTData dataset).
The implementation is based on the module data.special.split_mnist.

	
class hypnettorch.data.timeseries.split_smnist.SplitSMNIST(data_path, use_one_hot=False, validation_size=1000, target_per_timestep=True, labels=[0, 1], full_out_dim=False)

	Bases: SMNISTData

An instance of the class shall represent a SplitSMNIST task.

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – See argument data_path of class
data.timeseries.smnist_data.SMNISTData.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of validation samples. Validation
samples will be taken from the training set (the first [image: n]
samples).

	target_per_timestep (str [https://docs.python.org/3/library/stdtypes.html#str]) – See argument target_per_timestep of class
data.timeseries.smnist_data.SMNISTData.

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – The labels that should be part of this task.

	full_out_dim (bool [https://docs.python.org/3/library/functions.html#bool]) – Choose the original SMNIST instead of the new
task output dimension. This option will affect the attributes
data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

	
get_identifier()

	Returns the name of the dataset.

	
transform_outputs(outputs)

	Transform the outputs from the 10D MNIST dataset into proper labels
based on the constructor argument labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

	Parameters:

	outputs – 2D numpy array of outputs.

	Returns:

	2D numpy array of transformed outputs.

	
hypnettorch.data.timeseries.split_smnist.get_split_smnist_handlers(data_path, use_one_hot=True, validation_size=0, target_per_timestep=True, num_classes_per_task=2, num_tasks=None)

	This function instantiates 5 objects of the class SplitSMNIST
which will contain a disjoint set of labels.

The SplitSMNIST task consists of 5 tasks corresponding to stroke
trajectories for the images with labels [0,1], [2,3], [4,5], [6,7], [8,9].

	Parameters:

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – See argument data_path of class
data.timeseries.smnist_data.SMNISTData.

	use_one_hot (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the class labels should be represented in a
one-hot encoding.

	validation_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the validation set of each individual
data handler.

	target_per_timestep (str [https://docs.python.org/3/library/stdtypes.html#str]) – See argument target_per_timestep of class
data.timeseries.smnist_data.SMNISTData.

	num_classes_per_task (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes to put into one data
handler. If 2, then every data handler will include 2 digits.

	num_tasks (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of data handlers that should be
returned by this function.

	Returns:

	
	A list of data handlers, each corresponding to a
	SplitSMNIST object.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Hypernetworks

Contents

	Hypernetworks

	Hypernetwork Interface

	Chunked Deconvolutional Hypernetwork with Self-Attention Layers

	Chunked MLP - Hypernetwork

	Deconvolutional Hypernetwork with Self-Attention Layers

	Hypernetwork-container that wraps a mixture of hypernets

	Helper functions for hypernetworks

	Hypernetwork-wrapper for input-preprocessing and output-postprocessing

	MLP - Hypernetwork

	Example Instantiations of a Structured Chunked MLP - Hypernetwork

	Structured Chunked MLP - Hypernetwork

A hypernetwork [https://arxiv.org/abs/1609.09106] is a neural network that produces the weights of another network. As such, it can be seen as a specific type of main network (aka neural network). Therefore, each hypernetwork has a specific interface hypnettorch.hnets.hnet_interface.HyperNetInterface which is derived from the main network interface hypnettorch.mnets.mnet_interface.MainNetInterface.

Note

All hypernetworks in this subpackage implement the abstract interface hypnettorch.hnets.hnet_interface.HyperNetInterface to provide a consistent interface for users.

Hypernetwork Interface

The module hypnettorch.hnets.hnet_interface contains an interface for
hypernetworks.

A hypernetworks is a special type of neural network that produces the weights of
another neural network (called the main or target networks, see
hypnettorch.mnets.mnet_interface). The name “hypernetworks” was
introduced in

Ha et al., “Hypernetworks”, 2016. <https://arxiv.org/abs/1609.09106>

The interface ensures that we can consistently use different types of these
networks without knowing their specific implementation details (as long as we
only use functionalities defined in class HyperNetInterface).

	
class hypnettorch.hnets.hnet_interface.HyperNetInterface

	Bases: MainNetInterface

A general interface for hypernetworks.

	
add_to_uncond_params(dparams, params=None)

	Add perturbations to unconditional parameters.

This method simply adds a perturbation dparams ([image: d\theta]) to
the unconditional parameters [image: \theta].

	Parameters:

	
	dparams (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of tensors.

	params (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of tensors. If unspecified, attribute
unconditional_params is taken instead. Otherwise, the
method simply returns params + dparams.

	Returns:

	List were elements of dparams and unconditional params
(or params) are summed together.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
property conditional_param_shapes

	A list of lists of integers denoting the shape of every parameter
tensor belonging to the conditional parameters associated with this
hypernetwork (i.e., the complement of those returned by
unconditional_param_shapes). Note, the returned list is a subset
of the shapes maintained in
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes
and is independent whether these parameters are internally maintained
(i.e., occuring within conditional_params).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property conditional_param_shapes_ref

	A list of integers that has the same length as
conditional_param_shapes. Each entry represents an index within
attribute
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes.

It can be used to gain access to meta information about conditional
parameters via attribute
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes_meta.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property conditional_params

	The complement of the internally maintained parameters hold by
attribute unconditional_params.

A typical example of these parameters are embedding vectors. In
continual learning, for instance, there could be a separate task-
embedding per task used as hypernet input, see

von Oswald et al., “Continual learning with hypernetworks”,
ICLR 2020. https://arxiv.org/abs/1906.00695

Note

This attribute is None if there are no conditional
parameters that are internally maintained.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

	
convert_out_format(hnet_out, src_format, trgt_format)

	Convert the hypernetwork output into another format.

This is a helper method to easily convert the output of a hypernetwork
into different formats. Cf. argument ret_format of method
forward().

	Parameters:

	
	hnet_out (list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – See return value of method
forward().

	src_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format of argument hnet_out. See argument
ret_format of method forward().

	trgt_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The target format in which hnet_out should be
converted. See argument ret_format of method
forward().

	Returns:

	
	The input hnet_out converted into the
	target format trgt_format.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
abstract forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Perform a pass through the hypernetwork.

	Parameters:

	
	uncond_input (optional) – The unconditional input to the
hypernetwork.

Note

Not all scenarios require a hypernetwork with unconditional
inputs. For instance, a task-conditioned hypernetwork [https://arxiv.org/abs/1906.00695] only receives a task-embedding
(a conditional input) as input.

	cond_input (optional) – If applicable, the conditional input to
the hypernetwork.

	cond_id (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The ID of the condition to be
applied. Only applicable if conditional inputs/weights are
maintained internally and conditions are discrete.

Can also be a list of IDs if a batch of weights should be
produced.

Condition IDs have to be between 0 and num_conditions.

Note

Option is mutually exclusive with option cond_input.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – List of weight tensors, that are
used as hypernetwork parameters. If not all weights are
internally maintained, then this argument is non-optional.

If a list is provided, then it either has to match the
length of hypnettorch.mnets.mnet_interface.MainNetInterface.hyper_shapes_learned (if specified) or the length of attribute
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes.

If a dict is provided, it must have at least one of the
following keys specified:
- 'uncond_weights' (list): Contains unconditional weights.
- 'cond_weights' (list): Contains conditional weights.

	distilled_params (optional) – See docstring of method
hypnettorch.mnets.mnet_interface.MainNetInterface.forward().

	condition (optional) – See docstring of method
hypnettorch.mnets.mnet_interface.MainNetInterface.forward().

	ret_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format in which the generated weights are
returned. The following options are available.

	'flattened': The hypernet output will be a tensor of shape
[batch_size, num_outputs] (see num_outputs).

	'sequential': A list of length batch size is returned
that contains lists of length len(target_shapes), which
contain tensors with shapes determined by attribute
target_shapes. Hence, each entry of the returned list
contains the weights for one sample in the input batch.

	'squeezed': Same as 'sequential', but if the batch
size is 1, the list will be unpacked, such that a list of
tensors is returned (rather than a list of list of tensors).

Example

Assume target_shapes to be [[10, 5], [10]] and
cond_input to be the only input to the hypernetwork,
which is a batch of embeddings [B, E], where B is
the batch size and E is the embedding size.

Note, num_outputs = 60 in this case
(cmp. num_outputs).

If 'flattened' is used, a tensor of shape [B, 60] is
returned. If 'sequential' or 'squeezed' is used and
B > 1 (e.g., B=3), then a list of lists of tensors
(here denoted by their shapes) is returned
[[[10, 5], [10]], [[10, 5], [10]], [[10, 5], [10]]].
However, if B == 1 and 'squeezed' is used, then a
list of tensors is returned, e.g., [[10, 5], [10]].

	Returns:

	See description of argument ret_format.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_task_emb(task_id)

	Returns the task_id-th element from attribute
conditional_params.

Deprecated since version 1.0: Please access elements of attribute conditional_params
directly, as the conditional parameters do not have to correspond to
task embeddings.

	Parameters:

	task_id (int [https://docs.python.org/3/library/functions.html#int]) – Determines which element of
conditional_params should be returned.

	Returns:

	(torch.nn.Parameter)

	
get_task_embs()

	Returns attribute conditional_params.

Deprecated since version 1.0: Please access attribute conditional_params directly, as the
conditional parameters do not have to correspond to task embeddings.

	Returns:

	(list or None)

	
property num_known_conds

	The number of conditions known to this hypernetwork. If the number of
conditions is discrete and internally maintained by the hypernetwork,
then this attribute specifies how many conditions the hypernet manages.

Note

The option does not have to agree with the length of attribute
conditional_params. For instance, in certain cases there
are multiple conditional weights maintained per condition.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property num_outputs

	The total number of output neurons (number of weights generated for
the target network). This quantity can be computed based on attribute
target_shapes.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property target_shapes

	A list of list of integers representing the shapes of weight tensors
generated, i.e., the hypernet output, which could be, for instance, the
mnets.mnet_interface.MainNetInterface.hyper_shapes_learned
of another network whose weights this hypernetwork is producing.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property unconditional_param_shapes

	A list of lists of integers denoting the shape of every parameter
tensor belonging to the unconditional parameters associated with this
hypernetwork. Note, the returned list is a subset of the shapes
maintained in
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes
and is independent whether these parameters are internally maintained
(i.e., occuring within unconditional_params).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property unconditional_param_shapes_ref

	A list of integers that has the same length as
unconditional_param_shapes. Each entry represents an index
within attribute
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property unconditional_params

	Internally maintained parameters of the hypernetwork excluding
parameters that may be specific to a given condition, e.g., task
embeddings in continual learning.

Hence, it is the portion of parameter tensors from attribute
mnets.mnet_interface.MainNetInterface.internal_params that
is not specific to a certain task/condition.

Note

This attribute is None if there are no unconditional
parameters that are internally maintained.

Example

An example use-case for a hypernetwork [image: h] could be the
following: [image: h(x, e_i; \theta)], where [image: x] is an
arbitrary input, [image: e_i] is a learned embedding (condition)
and [image: \theta] are the internal “unconditional” parameters
of the hypernetwork. In some cases (for simplicity), the
conditions [image: e_i] as well as the parameters [image: \theta]
are maintained internally by this class. This attribute can be
used to gain access to the “unconditional” parameters
[image: \theta], while
mnets.mnet_interface.MainNetInterface.internal_params
would return all “conditional” parameters [image: e_i] as well
as the “unconditional” parameters [image: \theta].

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

	
property unconditional_params_ref

	A list of integers that has the same length as
unconditional_params. Each entry represents an index within
attribute hypnettorch.mnets.mnet_interface.MainNetInterface.internal_params.

If unconditional_params is None, the this attribute is
None as well.

Example

Using an instance hnet that implements this interface, the
following is True.

hnet.internal_params[hnet.unconditional_params_ref[i]] is hnet.unconditional_params[i]

Note

This attribute has different semantics compared to
unconditional_param_shapes_ref which points to locations
within
hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes, wheras this attribute points to locations within
hypnettorch.mnets.mnet_interface.MainNetInterface.internal_params.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

Chunked Deconvolutional Hypernetwork with Self-Attention Layers

The module hnets.chunked_deconv_hnet implements a chunked version of the
transpose convolutional hypernetwork represented by class
hnets.deconv_hnet.HDeconv (similar as to
hnets.chunked_mlp_hnet.ChunkedHMLP represents a chunked version of the
full hypernetwork hnets.mlp_hnet.HMLP).

Therefore, an instance of class ChunkedHDeconv manages internally an
instance of class hnets.deconv_hnet.HDeconv, which is invoked multiple
time with a different additional input (the so called chunk embedding) to
produce a chunk of the target weights at a time, which are later put together.
See description of module hnets.chunked_mlp_hnet for more details.

Note

This type of hypernetwork is completely agnostic to the architecture of the
target network. The splits happen at arbitrary locations in the flattened
target network weight vector.

	
class hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv(target_shapes, hyper_img_shape, chunk_emb_size=8, cond_chunk_embs=False, uncond_in_size=0, cond_in_size=8, num_layers=5, num_filters=None, kernel_size=5, sa_units=(1, 3), verbose=True, activation_fn=ReLU(), use_bias=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1, use_spectral_norm=False, use_batch_norm=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a chunked deconvolutional hypernet.

The target_shapes will be flattened and split into chunks of size
chunk_size = np.prod(hyper_img_shape). In total, there will be
np.ceil(self.num_outputs/chunk_size) chunks, where the last chunk
produced might contain a remainder that is discarded.

Each chunk has it’s own chunk embedding that is fed into the underlying
hypernetwork.

Note

It is possible to set uncond_in_size and cond_in_size to zero
if cond_chunk_embs is True.

	
(....)

	See attributes of class
hnets.chunked_mlp_hnet.ChunkedHMLP.

	Parameters:

	
	(....) – See constructor arguments of class
hnets.deconv_hnet.HDeconv.

	chunk_emb_size (int [https://docs.python.org/3/library/functions.html#int]) – See constructor arguments of class
hnets.chunked_mlp_hnet.ChunkedHMLP.

	cond_chunk_embs (bool [https://docs.python.org/3/library/functions.html#bool]) – See constructor arguments of class
hnets.chunked_mlp_hnet.ChunkedHMLP.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
property chunk_emb_size

	Getter for read-only attribute chunk_emb_size.

	
property cond_chunk_embs

	Getter for read-only attribute cond_chunk_embs.

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	(....) – See docstring of method
hnets.chunked_mlp_hnet.ChunkedHMLP.forward().

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_chunk_emb(chunk_id=None, cond_id=None)

	Get the chunk_id-th chunk embedding.

	Parameters:

	(....) – See docstring of method
hnets.chunked_mlp_hnet.ChunkedHMLP.get_chunk_emb().

	Returns:

	(torch.nn.Parameter)

	
get_cond_in_emb(cond_id)

	Get the cond_id-th (conditional) input embedding.

	Parameters:

	(....) – See docstring of method
hnets.deconv_hnet.HDeconv.get_cond_in_emb().

	Returns:

	(torch.nn.Parameter)

	
property num_chunks

	Getter for read-only attribute num_chunks.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Chunked MLP - Hypernetwork

The module hnets.chunked_mlp_hnet contains a Chunked Hypernetwork, that
uses a full hypernetwork (see hnets.mlp_hnet.HMLP) to produce one
chunk of the output weights at a time.

The hypernetwork [image: h_\theta(e)] (with input [image: e]) operates as follows.
The target outputs (see
hnets.hnet_interface.HyperNetInterface.target_shapes) are flattened and
split into equally sized chunks. Those chunks are separately generated by an
internal full hypernetwork [image: h'_{\theta'}(e,c)] (that is hidden from the
user), where [image: c] denotes the chunk embedding, which are internally
maintained and chunk-specific.

Note

This type of hypernetwork is completely agnostic to the architecture of the
target network. The splits happen at arbitrary locations in the flattened
target network weight vector.

	
class hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP(target_shapes, chunk_size, chunk_emb_size=8, cond_chunk_embs=False, uncond_in_size=0, cond_in_size=8, layers=(100, 100), verbose=True, activation_fn=ReLU(), use_bias=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1, dropout_rate=-1, use_spectral_norm=False, use_batch_norm=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a chunked fully-connected hypernet.

The target_shapes will be flattened and split into chunks of size
chunk_size. In total, there will be
np.ceil(self.num_outputs/chunk_size) chunks, where the last chunk
produced might contain a remainder that is discarded.

Each chunk has it’s own chunk embedding that is fed into the underlying
hypernetwork.

Note

It is possible to set uncond_in_size and cond_in_size to zero
if cond_chunk_embs is True.

	Parameters:

	
	(....) – See constructor arguments of class
hnets.mlp_hnet.HMLP.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The chunk size, i.e, the number of weights produced by
individual forward passes of the internally maintained instance of a
full hypernet (see hnets.mlp_hnet.HMLP) upon receiving a
chunk embedding).

	chunk_emb_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of a chunk embedding.

	cond_chunk_embs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether chunk embeddings are unconditional
(False) or conditional (True) parameters. See constructor
argument cond_chunk_embs.

Note

Embeddings will be initialized with a normal distribution using
zero mean and unit variance.

	cond_chunk_embs – Consider chunk embeddings to be conditional.
In this case, there will be a different set of chunk embeddings per
condition (specified via num_cond_embs).

If False, there will be a total of num_chunks chunk
embeddings that are maintained within hnets.hnet_interface.HyperNetInterface.unconditional_param_shapes. If True, there will be
num_cond_embs * self.num_chunks chunk embeddings that are
maintained within hnets.hnet_interface.HyperNetInterface.conditional_param_shapes. However, if num_cond_embs == 0,
then chunk embeddings have to be provided in a special way to the
forward() method (see the corresponding argument weights).

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
apply_chunked_hyperfan_init(method='in', use_xavier=False, uncond_var=1.0, cond_var=1.0, eps=1e-05, cemb_normal_init=False, mnet=None, target_vars=None)

	Initialize the network using a chunked hyperfan init.

Inspired by the method
Hyperfan Init [https://openreview.net/forum?id=H1lma24tPB] which we
implemented for the MLP hypernetwork in method
hnets.mlp_hnet.HMLP.apply_hyperfan_init(), we heuristically
developed a better initialization method for chunked hypernetworks.

Unfortunately, the Hyperfan Init method from the paper does not apply
to this kind of hypernetwork, since we reuse the same hypernet output
head for the whole main network.

Luckily, we can provide a simple heuristic. Similar to
Meyerson & Miikkulainen [https://arxiv.org/abs/1906.00097] we play
with the variance of the input embeddings to affect the variance of the
output weights.

In a chunked hypernetwork, the input for each chunk is identical except
for the chunk embeddings [image: \mathbf{c}]. Let [image: \mathbf{e}]
denote the remaining inputs to the hypernetwork, which are identical
for all chunks. Then, assuming the hypernetwork was initialized via
fan-in init, the variance of the hypernetwork output [image: \mathbf{v}]
can be written as follows (see documentation of method
hnets.mlp_hnet.HMLP.apply_hyperfan_init()):

[image: \text{Var}(v) = \frac{n_e}{n_e+n_c} \text{Var}(e) + \ \frac{n_c}{n_e+n_c} \text{Var}(c)]

Hence, we can achieve a desired output variance [image: \text{Var}(v)]
by initializing the chunk embeddings [image: \mathbf{c}] via the
following variance:

[image: \text{Var}(c) = \max \Big\{ 0, \ \frac{1}{n_c} \big[(n_e+n_c) \text{Var}(v) - \ n_e \text{Var}(e) \big] \Big\}]

Now, one important question remains. How do we pick a desired output
variance [image: \text{Var}(v)] for a chunk?

Note, a chunk may include weights from several layers. The likelihood
for this to happen depends on the main net architecture and the chunk
size (see constructor argument chunk_size). The smaller the chunk
size, the less likely it is that a chunk will contain elements from
multiple main net weight tensors.

In case each chunk would contain only weights from one main net weight
tensor, we could simply pick the variance [image: \text{Var}(v)] that
would have been chosen by a main net initialization method (such as
Xavier).

In case a chunk contains contributions from several main net weight
tensors, we apply the following heuristic. If a chunk contains
contributions of a set of main network weight tensors
[image: W_1, \dots, W_K] with relative contribution sizes[image: n_1, \dots, n_K] such that [image: n_1 + \dots + n_K = n_v] where
[image: n_v] denotes the chunk size and if the corresponding main network
initialization method would require init variances
[image: \text{Var}(w_1), \dots, \text{Var}(w_K)], then we simply request
a weighted average as follow:

[image: \text{Var}(v) = \frac{1}{n_v} \sum_{k=1}^K n_k \text{Var}(w_k)]

What about bias vectors? Usually, the variance analysis applied to
Xavier or Kaiming init assumes that biases are initialized to zero. This
is not possible in this setting, as it would require assigning a
negative variance to [image: \mathbf{c}]. Instead, we follow the default
PyTorch initialization (e.g., see method reset_parameters in class
torch.nn.Linear [https://pytorch.org/docs/master/generated/torch.nn.Linear.html#torch.nn.Linear]). There, bias vectors are initialized uniformly
within a range of [image: \pm \frac{1}{\sqrt{f_{\text{in}}}}] where
[image: f_{\text{in}}] refers to the fan-in of the layer. This type of
initialization corresponds to a variance of
[image: \text{Var}(v) = \frac{1}{3 f_{\text{in}}}].

Note

All hypernet inputs are assumed to be zero-mean random variables.

Note

To avoid that the variances with which chunks are initialized
have to be clipped (because they are too small or even negative),
the variance of the remaining hypernet inputs should be properly
scaled. In general, one should adhere the following rule

[image: \text{Var}(e) < \frac{n_e+n_c}{n_e} \text{Var}(v)]

This method will calculate and print the maximum value that should
be chosen for [image: \text{Var}(e)] and will print warnings if
variances have to be clipped.

	Parameters:

	
	(....) – See arguments of method
hnets.mlp_hnet.HMLP.apply_hyperfan_init().

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of initialization that should be applied.
Possible options are:

	in: Use Chunked Hyperfan-in, i.e., rather the output
variances of the hypernetwork should correspond to fan-in
variances.

	out: Use Chunked Hyperfan-out, i.e., rather the output
variances of the hypernetwork should correspond to fan-out
variances.

	harmonic: Use the harmonic mean of the fan-in and fan-out
variance as target variance of the hypernetwork output.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – The minimum variance with which a chunk embedding is
initialized.

	cemb_normal_init (bool [https://docs.python.org/3/library/functions.html#bool]) – Use normal init for chunk embeddings
rather than uniform init.

	target_vars (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The variance of the
distribution for each parameter tensor generated by this
hypernetwork. Target variance values can either be provided as
list of length len(hnet.target_shapes) or as dictionary.
The usage is analoguous to the usage of parameter w_val of
method hnets.mlp_hnet.HMLP.apply_hyperfan_init().

Note

This method currently does not allow initial output
distributions with non-zero mean. However, the docstring of
method
probabilistic.gauss_hnet_init.gauss_hyperfan_init()
describes how this is in principle feasible and might be
incorporated in the future.

Note

Unspecified target variances for parameter tensors of type
'weight' or 'bias' are computed as described above.
Default target variances for all other parameter tensor
types are simply 1.

	
property chunk_emb_size

	See constructor argument chunk_emb_size.

	
property cond_chunk_embs

	See constructor argument cond_chunk_embs.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

	Returns:

	See hnets.mlp_hnet.HMLP.distillation_targets().

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	
	(....) – See docstring of method
hnets.mlp_hnet.HMLP.forward().

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided as dict and
chunk embeddings are considered conditional (see constructor
argument cond_chunk_embs), then the additional key
chunk_embs can be used to pass a batch of chunk embeddings.
This option is mutually exclusive with the option of passing
cond_id. Note, if conditional inputs via cond_input are
expected, then the batch sizes must agree.

A batch of chunk embeddings is expected to be tensor of shape
[B, num_chunks, chunk_emb_size], where B denotes the
batch size.

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_chunk_emb(chunk_id=None, cond_id=None)

	Get the chunk_id-th chunk embedding.

	Parameters:

	
	chunk_id (int [https://docs.python.org/3/library/functions.html#int], optional) – A number between 0 and num_chunks
- 1. If not specified, a full chunk matrix with shape
[num_chunks, chunk_emb_size] is returned. Otherwise,
the chunk_id-th row is returned.

	cond_id (int [https://docs.python.org/3/library/functions.html#int]) – Is mandatory if constructor argument
cond_chunk_embs was set. Determines the set of chunk
embeddings to be considered.

	Returns:

	(torch.nn.Parameter)

	
get_cond_in_emb(cond_id)

	Get the cond_id-th (conditional) input embedding.

	Parameters:

	(....) – See docstring of method
hnets.mlp_hnet.HMLP.get_cond_in_emb().

	Returns:

	(torch.nn.Parameter)

	
property num_chunks

	The number of chunks that make up the final hypernet output.

This also corresponds to the number of chunk embeddings
required per forward sweep.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Deconvolutional Hypernetwork with Self-Attention Layers

The module hnets.deconv_hnet implements a hypernetwork that uses
transpose convolutions (like the generator of a GAN) to generate weights.
Though, as convolutions usually suffer from only capturing local correlations
sufficiently, we incorporate the self-attention mechanism developed by

Zhang et al., Self-Attention Generative Adversarial Networks [https://arxiv.org/abs/1805.08318], 2018.

See utils.self_attention_layer.SelfAttnLayerV2 for details on this
layer type.

The purpose of this network can be seen as the convolutional analogue of the
fully-connected hnets.mlp_hnet.HMLP. Hence, it produces all weights in
one go; and does not utilize chunking to obtain better weight compression ratios
(a chunked version can be found in module hnets.chunked_deconv_hnet).

	
class hypnettorch.hnets.deconv_hnet.HDeconv(target_shapes, hyper_img_shape, uncond_in_size=0, cond_in_size=8, num_layers=5, num_filters=None, kernel_size=5, sa_units=(1, 3), verbose=True, activation_fn=ReLU(), use_bias=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1, use_spectral_norm=False, use_batch_norm=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a deconvolutional full hypernet.

This is a convolutional network, employing transpose convolutions. The
network structure is inspired by the
DCGAN [https://arxiv.org/abs/1511.06434] generator structure, though,
we are additionally using self-attention layers to model global
dependencies.

In general, each transpose convolutional layer will roughly double its
input size. Though, we set the hard constraint that if the input size of
a transpose convolutional layer would be smaller 4, then it doesn’t change
the size.

The network allows to maintain a set of embeddings internally that can be
used as conditional input (cmp. hnets.mlp_hnet.HMLP).

	Parameters:

	
	(....) – See constructor arguments of class
hnets.mlp_hnet.HMLP.

	hyper_img_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Since the network has a (de-)convolutional
output layer, the output will be in an image-like shape. Therefore,
it won’t be possible to precisely produce the number of weights
prescribed by target_shapes. Therefore, the hyper-image size
defined via this option has to be chosen big enough, i.e., the
number of pixels must be greater equal than the number of weights to
be produced. Remaining pixels will be discarded.

This option has to be a tuple (width, height), denoting the
internal output shape of the the hypernet. The number of output
channels is assumed to be 1, except if specified otherwise via
(width, height, channels).

	num_layers (int [https://docs.python.org/3/library/functions.html#int]) – The number of transpose convolutional layers including
the initial fully-connected layer.

	num_filters (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of integers of length
num_layers-1. The number of output channels in each hidden
transpose conv. layer. By default, the number of filters in the
last hidden layer will be 128 and doubled in every prior layer.

Note

The output of the first layer (which is fully-connected) is here
considered to be in the shape of an image tensor.

	kernel_size (int [https://docs.python.org/3/library/functions.html#int], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A single number, a tuple
(k_x, k_y) or a list of scalars/tuples of length
num_layers-1. Specifying the kernel size in each convolutional
layer.

	sa_units (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – List of integers, each representing the index
of a layer in this network after which a self-attention unit should
be inserted. For instance, index 0 represents the
fully-connected layer. The last layer may not be chosen.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	(....) – See docstring of method
hnets.mlp_hnet.HMLP.forward().

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_cond_in_emb(cond_id)

	Get the cond_id-th (conditional) input embedding.

	Parameters:

	cond_id (int [https://docs.python.org/3/library/functions.html#int]) – Determines which input embedding should be returned
(the ID has to be between 0 and num_cond_embs-1, where
num_cond_embs denotes the corresponding constructor
argument).

	Returns:

	(torch.nn.Parameter)

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Hypernetwork-container that wraps a mixture of hypernets

The module hnets.hnet_container contains a hypernetwork container,
i.e., a hypernetwork that produces weights by internally using a mixture of
hypernetworks that implement the interface
hnets.hnet_interface.HyperNetInterface. The container also allows the
specification of shared or condition-specific weights.

Example

Assume a target network with shapes
target_shapes=[[10, 5], [5], [5], [5], [5, 5]], where the first 4
tensors represent the weight matrix, bias vector and batch norm scale and
shift, while the last tensor is the linear output layer’s weight matrix.

We consider two usecase scenarios. In the first one, the first layer weights
(matrix and bias vector) are generated by a hypernetwork, while the batch
norm weights should be realized via a fixed set of shared weights. The
output weights shall be condition-specific:

from hnets import HMLP

First-layer weights.
fl_hnet = HMLP([[10, 5], [5]], num_cond_embs=5)

def assembly_fct(list_of_hnet_tensors, uncond_tensors, cond_tensors):
 assert len(list_of_hnet_tensors) == 1
 return list_of_hnet_tensors[0] + uncond_tensors + cond_tensors

hnet = HContainer([[10, 5], [5], [5], [5], [5, 5]], assembly_fct,
 hnets=[fl_hnet], uncond_param_shapes=[[5], [5]],
 cond_param_shapes=[[5, 5]],
 uncond_param_names=['bn_scale', 'bn_shift'],
 cond_param_names=['weight'], num_cond_embs=5)

In the second usecase scenario, we utilize two separate hypernetworks, one
as above and a second one for the condition-specific output weights.
Batchnorm weights remain to be realized via a single set of shared weights.

from hnets import HMLP

First-layer weights.
fl_hnet = HMLP([[10, 5], [5]], num_cond_embs=5)
Last-layer weights.
ll_hnet = HMLP([[5, 5]], num_cond_embs=5)

def assembly_fct(list_of_hnet_tensors, uncond_tensors, cond_tensors):
 assert len(list_of_hnet_tensors) == 2
 return list_of_hnet_tensors[0] + uncond_tensors + \
 list_of_hnet_tensors[1]

hnet = HContainer([[10, 5], [5], [5], [5], [5, 5]], assembly_fct,
 hnets=[fl_hnet, ll_hnet],
 uncond_param_shapes=[[5], [5]],
 uncond_param_names=['bn_scale', 'bn_shift'],
 num_cond_embs=5)

	
class hypnettorch.hnets.hnet_container.HContainer(target_shapes, assembly_fct, hnets=None, uncond_param_shapes=None, cond_param_shapes=None, uncond_param_names=None, cond_param_names=None, verbose=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a wrapper that abstracts the use of a set of
hypernetworks.

Note

Parameter tensors instantiated by this constructor are initialized via
a normal distribution [image: \mathcal{N}(0, 0.02)].

	Parameters:

	
	(....) – See constructor arguments of class
hnets.mlp_hnet.HMLP.

	assembly_fct (func) – A function handle that takes the produced tensors
of each internal hypernet (see arguments hnets,
uncond_param_shapes and cond_param_shapes) and converts them
into tensors with shapes target_shapes.

The function handle must have the signature:
assembly_fct(list_of_hnet_tensors, uncond_tensors, cond_tensors)
. The first argument is a list of lists of tensors, the reamining
two are lists of tensors. hnet_tensors contains the output of
each hypernetwork in hnets. uncond_tensors contains all
internally maintained unconditional weights as specified by
uncond_param_shapes. cond_tensors contains the internally
maintained weights corresponding to the selected condition and as
specified by argument cond_param_shapes. The function is
expected to return a list of tensors, each of them having a shape as
specified by target_shapes.

Example

Assume target_shapes=[[3], [3], [10, 5], [5]] and that
hnets is made up of two hypernetworks with output shapes
[[3]] and [[3], [10, 5]]. In addition
cond_param_shapes=[[5]].
Then the argument hnet_tensors will be a list of lists of
tensors as follows:
[[tensor(3)], [tensor(3), tensor(10, 5)], uncond_tensors
will be an empty list and cond_tensors will be list of
tensors: [[tensor(5)]].

The output of assembly_fct is expected to be a list of
tensors as follows:
[tensor(3), tensor(3), tensor(10, 5), tensor(5)].

Note

This function considers one sample at a time, even if a batch
of inputs is processed.

Note

It is assumed that assembly_fct does not further process the
incoming weights. Otherwise, the attributes
mnets.mnet_interface.MainNetInterface.has_fc_out and
mnets.mnet_interface.MainNetInterface.has_linear_out
might be invalid.

	hnets (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of instances of class
hnets.hnet_interface.HyperNetInterface. All these
hypernetworks are assumed to produce a part of the weights that are
then assembled to a common hypernetwork output via the
assembly_fct.

	uncond_param_shapes (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of lists of integers. Each
entry in the list encodes the shape of an (unconditional) parameter
tensor that will be added to attribute
hnets.hnet_interface.HyperNetInterface.unconditional_params
and additionally will also become an output of this hypernetwork
that is passed to the assembly_fct.

Hence, these parameters are independent of the hypernetwork input.
Thus, they are just treated as normal weights as if they were part
of the main network. This option therefore only provides the
convinience of mimicking the behavior weights would elicit if they
were part of the main network without needing to change the main
network its implementation.

	cond_param_shapes (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of lists of integers. Each
entry in the list encodes the shape of a (conditional) parameter
tensor that will be added to attribute
hnets.hnet_interface.HyperNetInterface.conditional_params
(how often it will be added is determined by argument
num_cond_embs). It is otherwise similar to option
uncond_param_shapes.

Note

If this option is specified, then argument cond_id of
forward() has to be specified.

	uncond_param_names (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If provided, it must have the same
length as uncond_param_shapes. It will contain a list of strings
that are used as values for key name in attribute
hnets.hnet_interface.HyperNetInterface.param_shapes_meta.

If not provided, shapes with more than 1 element are assigned value
weights and all others are assigned value bias.

	cond_param_names (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Same as argument
uncond_param_names for argument cond_param_shapes.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	
	(....) – See docstring of method
hnets.mlp_hnet.HMLP.forward(). Some further information
is provided below.

	uncond_input (optional) – Passed to underlying hypernetworks (see
constructor argument hnets).

	cond_input (optional) – Passed to underlying hypernetworks (see
constructor argument hnets).

	cond_id (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Only passed to underlying
hypernetworks (see constructor argument hnets) if
cond_input is None.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided as dict then
an additional key hnets can be specified, which has to a
list of the same length as the constructor argument hnets
containing dictionaries as entries that will be concatenated
to the extracted (hnet-specific) keys uncond_weights and
cond_weights.

For instance, for an instance of class
hnets.chunked_mlp_hnet.ChunkedHMLP the additional key
chunk_embs might be added.

	condition (optional) – Will be passed to the underlying hypernetworks
(see constructor argument hnets).

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
property internal_hnets

	The list of internal hypernetworks provided via constructor argument
hnets.

If hnets was not provided, the attribute is an empty list.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Helper functions for hypernetworks

The module hnets.hnet_helpers contains utilities that should simplify
working with hypernetworks that implement the interface
hnets.hnet_interface.HyperNetInterface. Those helper functions are
meant to handle common manipulations (such as embedding initialization) in an
abstract way that hides implementation details to the user.

	
hypnettorch.hnets.hnet_helpers.get_conditional_parameters(hnet, cond_id)

	Get condition specific parameters from the hypernetwork.

Example

Class hnets.mlp_hnet.HMLP may only have one embedding (the
conditional input embedding) per condition as conditional parameter.
Thus, this function will simply return
[hnet.get_cond_in_emb(cond_id)].

	Parameters:

	
	hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork whose
conditional parameters regarding cond_id should be extraced.

	cond_id (int [https://docs.python.org/3/library/functions.html#int]) – The condition (or its conditional ID) for which
parameters should be extraced.

	Returns:

	
	A list of tensors, a subset of attribute
	hnets.hnet_interface.HyperNetInterface.conditional_params,
that are specific to the condition cond_id. An empty list is
returned if conditional parameters are not maintained internally.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
hypnettorch.hnets.hnet_helpers.init_chunk_embeddings(hnet, normal_mean=0.0, normal_std=1.0, init_fct=None)

	Initialize chunk embeddings.

This function only applies to hypernetworks that make use of chunking,
such as hnets.chunked_mlp_hnet.ChunkedHMLP. All other hypernetwork
types will be unaffected by this function.

This function handles the initialization of embeddings very similar to
function init_conditional_embeddings(), except that the function
handle init_fct has a slightly different signature. It receives two
positional arguments, the chunk embedding and the chunk embedding ID as well
as one optional argument cond_id, the conditional ID (in case of
conditional chunk embeddings).

init_fct = lambda cemb, cid, cond_id=None : nn.init.constant_(cemb, 0)

Note

Class hnets.structured_mlp_hnet.StructuredHMLP has multiple
sets of chunk tensors as specified by attribute
hnets.structured_mlp_hnet.StructuredHMLP.chunk_emb_shapes. As
a simplifying design choice, the tensors passed to init_fct will not
be single embeddings (i.e., vectors), but tensors of embeddings
according to the shapes in attribute
hnets.structured_mlp_hnet.StructuredHMLP.chunk_emb_shapes.

	Parameters:

	(....) – See docstring of function init_conditional_embeddings().

	
hypnettorch.hnets.hnet_helpers.init_conditional_embeddings(hnet, normal_mean=0.0, normal_std=1.0, init_fct=None)

	Initialize internally maintained conditional input embeddings.

This function initializes conditional embeddings if the hypernetwork has
any and they are internally maintained. For instance, the conditional
embeddings of an HMLP instance are those returned by the method
hnets.mlp_hnet.HMLP.get_cond_in_emb().

By default, those embedding will follow a normal distribution. However, one
may pass a custom init function init_fct that receives the embedding
and its corresponding conditional ID as input (as is expected to modify the
embedding in-place):

init_fct(cond_emb, cond_id)

Hypernetworks that don’t make use of internally maintained conditional input
embeddings will not be affected by this function.

Note

Chunk embeddings may also be conditional parameters, but are not
considered conditional input embeddings here. Conditional chunk
embeddings can be initialized using function
init_chunk_embeddings().

	Parameters:

	
	hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork whose
conditional embeddings should be initialized.

	normal_mean (float [https://docs.python.org/3/library/functions.html#float]) – The mean of the normal distribution with which
embeddings should be initialized.

	normal_std (float [https://docs.python.org/3/library/functions.html#float]) – The std of the normal distribution with which
embeddings should be initialized.

	init_fct (func, optional) – A function handle that receives a conditional
embedding and its ID as input and initializes the embedding
in-place. If provided, arguments normal_mean and normal_std
will be ignored.

Hypernetwork-wrapper for input-preprocessing and output-postprocessing

The module hnets.hnet_perturbation_wrapper implements a wrapper for
hypernetworks that implement the interface
hnets.hnet_interface.HyperNetInterface. By default, the wrapper is
meant for perturbing hypernetwork outputs, such that an implicit distribution
(realized via a hypernetwork) with low-dimensional support can be inflated to
have support in the full weight space.

However, the wrapper allows in general to pass function handles that preprocess
inputs and/or postprocess hypernetwork outputs.

	
class hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper(hnet, hnet_uncond_in_size=None, sigma_noise=0.02, input_handler=None, output_handler=None, verbose=True)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Hypernetwork wrapper for output perturbation.

This wrapper is meant as a helper for hypernetworks that represent
implicit distributions, i.e., distributions that transform a simple base
distribution [image: p_Z(z)] into a complex target distributions

[image: w \sim q_{\theta}(W) \Leftrightarrow w = h_{\theta}(z) \quad \text{,} \quad z \sim p_Z(Z)]

However, the wrapper is more versatile and can also become handy in a
variety of other use cases. Yet, in the following we concentrate on
implicit distributions and their practical challenges. One main challenge
is typically that the density [image: q_\theta(W)] is only defined on a
lower-dimensional manifold of the weight space. This is often an undesirable
property (e.g., such implicit distributions are often not amenable for
optimization with standard divergence measures, such as the KL).

A simple way to overcome this issue is to add noise perturbations to the
output of the hypernetwork, such that the perturbations itself origin from
a full-support distribution. By default, this hypernetwork wrapper adjusts
the sampling procedure above in the following way

(1)[image: w \sim \tilde{q}_{\theta}(W) \Leftrightarrow w = h_{\theta}(z_{:n}) + \sigma_{\text{noise}}^2 z \equiv \tilde{h}_{\theta}(z) \quad \text{,} \quad z \sim p_Z(Z)]

where now [image: \dim(\mathcal{W}) = \dim(\mathcal{Z})],
[image: \sigma_\text{noise}] is a hyperparameter that controls the
perturbation strength, and [image: z_{:n}] are the [image: n] first entries
of the vector [image: z].

By default, the unconditional input size of this hypernetwork will be
of size hnet.num_outputs (if input_handler is not provided) and the
output size will be of the same size.

	Parameters:

	
	hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork around
which this wrapper should be wrapped.

	hnet_uncond_in_size (int [https://docs.python.org/3/library/functions.html#int]) – This argument refers to [image: n] from Eq.
(1). If input_handler is provided, this
argument will be ignored.

	sigma_noise (float [https://docs.python.org/3/library/functions.html#float]) – The perturbation strength
[image: \sigma_\text{noise}] from Eq. (1). If
output_handler is provided, this argument will be ignored.

	input_handler (func, optional) – A function handler to process the
inputs to the hnets.hnet_interface.HyperNetInterface.forward()
method of hnet. The function handler should have the following
signature

uncond_input_int, cond_input_int, cond_id_int = input_handler(\
 uncond_input=None, cond_input=None, cond_id=None)

The returned values will be passed to internal_hnet.

Example

For instance, to reproduce the behavior depicted in Eq.
(1) one could provide the following handler

def input_handler(uncond_input=None, cond_input=None,
 cond_id=None):
 assert uncond_input is not None
 n = 5
 return uncond_input[:, :n], cond_input, cond_id

	output_handler (func, optional) – A function handler to postprocess the
outputs of the internal hypernetwork internal_hnet.

A function handler with the following signature is expected.

hnet_out = output_handler(hnet_out_int, uncond_input=None,
 cond_input=None, cond_id=None)

where hnet_out_int is the output of the internal hypernetwork
internal_hnet and the remaining arguments are the original
arguments passed to method forward(). hnet_out_int will
always have the format ret_format='flattened' and is also
expected to return this format.

Example

Deviating from Eq. (1), let’s say we want
to implement the following sampling behavior

[image: w \sim \hat{q}_\theta(W) \Leftrightarrow w = h_\theta(z) + \epsilon_w \quad \text{,} \quad z \sim p_Z(Z) \text{ and } \epsilon_w \sim p_\text{noise}(W)]

In this case the unconditional input uncond_input to the
forward() method is expected to have size
[image: \dim(\mathcal{Z}) + \dim(\mathcal{W})].

def input_handler(uncond_input=None, cond_input=None,
 cond_id=None):
 assert uncond_input is not None
 return uncond_input[:, :dim_z], cond_input, cond_id

def output_handler(hnet_out_int, uncond_input=None,
 cond_input=None, cond_id=None):
 assert uncond_input is not None
 return hnet_out_int + uncond_input[:, dim_z:]

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether network information should be printed during
network creation.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

	Returns:

	Simply returns the distillation_targets of the internal hypernet
internal_hnet`.

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	(....) – See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
property internal_hnet

	The underlying hypernetwork that was passed via constructor argument
hnet.

	Type:

	hnets.hnet_interface.HyperNetInterface

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

MLP - Hypernetwork

The module hnets.mlp_hnet contains a fully-connected hypernetwork
(also termed full hypernet).

This type of hypernetwork represents one of the most simplistic architectural
choices to realize a weight generator. An embedding input, which may consists of
conditional and unconditional parts (for instance, in the case of
task-conditioned hypernetwork [https://arxiv.org/abs/1906.00695] the
conditional input will be a task embedding) is mapped via a series of fully-
connected layers onto a final hidden representation. Then a linear
fully-connected output layer per is used to produce the target weights, output
tensors with shapes specified via the target shapes (see
hnets.hnet_interface.HyperNetInterface.target_shapes).

If no hidden layers are used, then this resembles a simplistic linear
hypernetwork, where the input embeddings are linearly mapped onto target
weights.

	
class hypnettorch.hnets.mlp_hnet.HMLP(target_shapes, uncond_in_size=0, cond_in_size=8, layers=(100, 100), verbose=True, activation_fn=ReLU(), use_bias=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1, dropout_rate=-1, use_spectral_norm=False, use_batch_norm=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a full hypernet.

The network will consist of several hidden layers and a final linear output
layer that produces all weight matrices/bias-vectors the network has to
produce.

The network allows to maintain a set of embeddings internally that can be
used as conditional input.

	Parameters:

	
	target_shapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of lists of intergers, i.e., a list of tensor
shapes. Those will be the shapes of the output weights produced by
the hypernetwork. For each entry in this list, a separate output
layer will be instantiated.

	uncond_in_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of unconditional inputs (for instance,
noise).

	cond_in_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of conditional input embeddings.

Note, if no_cond_weights is False, those embeddings will be
maintained internally.

	layers (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – List of integers denoteing the sizes of each
hidden layer. If empty, no hidden layers will be produced.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether network information should be printed during
network creation.

	activation_fn (func) – The activation function to be used for hidden
activations. For instance, an instance of class
torch.nn.ReLU [https://pytorch.org/docs/master/generated/torch.nn.ReLU.html#torch.nn.ReLU].

	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the fully-connected layers that make up this
network should have bias vectors.

	no_uncond_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, unconditional weights are not
maintained internally and instead expected to be produced
externally and passed to the forward().

	no_cond_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, conditional embeddings are assumed
to be maintained externally. Otherwise, option num_cond_embs
has to be properly set, which will determine the number of
embeddings that are internally maintained.

	num_cond_embs (int [https://docs.python.org/3/library/functions.html#int]) – Number of conditional embeddings to be internally
maintained. Only used if option no_cond_weights is False.

Note

Embeddings will be initialized with a normal distribution using
zero mean and unit variance.

	dropout_rate (float [https://docs.python.org/3/library/functions.html#float]) – If -1, no dropout will be applied. Otherwise a
number between 0 and 1 is expected, denoting the dropout rate of
hidden layers.

	use_spectral_norm (bool [https://docs.python.org/3/library/functions.html#bool]) – Use spectral normalization for training.

	use_batch_norm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether batch normalization should be used. Will
be applied before the activation function in all hidden layers.

Note

Batch norm only makes sense if the hypernetwork is envoked with
batch sizes greater than 1 during training.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
apply_hyperfan_init(method='in', use_xavier=False, uncond_var=1.0, cond_var=1.0, mnet=None, w_val=None, w_var=None, b_val=None, b_var=None)

	Initialize the network using hyperfan init.

Hyperfan initialization was developed in the following paper for this
kind of hypernetwork

“Principled Weight Initialization for Hypernetworks”
https://openreview.net/forum?id=H1lma24tPB

The initialization is based on the following idea: When the main network
would be initialized using Xavier or Kaiming init, then variance of
activations (fan-in) or gradients (fan-out) would be preserved by using
a proper variance for the initial weight distribution (assuming certain
assumptions hold at initialization, which are different for Xavier and
Kaiming).

When using this kind of initializations in the hypernetwork, then the
variance of the initial main net weight distribution would simply equal
the variance of the input embeddings (which can lead to exploding
activations, e.g., for fan-in inits).

The above mentioned paper proposes a quick fix for the type of hypernet
that resembles the simple MLP hnet implemented in this class, i.e.,
which have a separate output head per weight tensor in the main network.

Assuming that input embeddings are initialized with a certain variance
(e.g., 1) and we use Xavier or Kaiming init for the hypernet, then the
variance of the last hidden activation will also be 1.

Then, we can modify the variance of the weights of each output head in
the hypernet to obtain the same variance per main net weight tensor that
we would typically obtain when applying Xavier or Kaiming to the main
network directly.

Note

If mnet is not provided or the corresponding attribute
mnets.mnet_interface.MainNetInterface.param_shapes_meta is
not implemented, then this method assumes that 1D target tensors
(cf. constructor argument target_shapes) represent bias vectors
in the main network.

Note

To compute the hyperfan-out initialization of bias vectors, we need
access to the fan-in of the layer, which we can only compute based
on the corresponding weight tensor in the same layer. This is only
possible if mnet is provided. Otherwise, the following
heuristic is applied. We assume that the shape directly preceding
a bias shape in the constructor argument target_shapes is the
corresponding weight tensor.

Note

All hypernet inputs are assumed to be zero-mean random variables.

Variance of the hypernet input

In general, the input to the hypernetwork can be a concatenation of
multiple embeddings (see description of arguments uncond_var and
cond_var).

Let’s denote the complete hypernetwork input by
[image: \mathbf{x} \in \mathbb{R}^n], which consists of a conditional
embedding [image: \mathbf{e} \in \mathbb{R}^{n_e}] and an unconditional
input [image: \mathbf{c} \in \mathbb{R}^{n_c}], i.e.,

[image: \mathbf{x} = \begin{bmatrix} \ \mathbf{e} \\ \ \mathbf{c} \ \end{bmatrix}]

We simply define the variance of an input [image: \text{Var}(x_j)] as
the weighted average of the individual variances, i.e.,

[image: \text{Var}(x_j) \equiv \frac{n_e}{n_e+n_c} \text{Var}(e) + \ \frac{n_c}{n_e+n_c} \text{Var}(c)]

To see that this is correct, consider a linear layer
[image: \mathbf{y} = W \mathbf{x}] or

[image: y_i &= \sum_j w_{ij} x_j \\ \ &= \sum_{j=1}^{n_e} w_{ij} e_j + \ \sum_{j=n_e+1}^{n_e+n_c} w_{ij} c_{j-n_e}]

Hence, we can compute the variance of [image: y_i] as follows (assuming
the typical Xavier assumptions):

[image: \text{Var}(y) &= n_e \text{Var}(w) \text{Var}(e) + \ n_c \text{Var}(w) \text{Var}(c) \\ \ &= \frac{n_e}{n_e+n_c} \text{Var}(e) + \ \frac{n_c}{n_e+n_c} \text{Var}(c)]

Note, that Xavier would have initialized [image: W] using
[image: \text{Var}(w) = \frac{1}{n} = \frac{1}{n_e+n_c}].

	Parameters:

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of initialization that should be applied.
Possible options are:

	'in': Use Hyperfan-in.

	'out': Use Hyperfan-out.

	'harmonic': Use the harmonic mean of the Hyperfan-in and
Hyperfan-out init.

	use_xavier (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether Kaiming (False) or Xavier (True)
init should be used.

	uncond_var (float [https://docs.python.org/3/library/functions.html#float]) – The variance of unconditional embeddings. This
value is only taken into consideration if uncond_in_size > 0
(cf. constructor arguments).

	cond_var (float [https://docs.python.org/3/library/functions.html#float]) – The initial variance of conditional embeddings.
This value is only taken into consideration if
cond_in_size > 0 (cf. constructor arguments).

	mnet (mnets.mnet_interface.MainNetInterface, optional) – If
applicable, the user should provide the main (or target)
network, whose weights are generated by this hypernetwork. The
mnet instance is used to extract valuable information that
improve the initialization result. If provided, it is assumed
that target_shapes (cf. constructor arguments) corresponds
either to
mnets.mnet_interface.MainNetInterface.param_shapes or
mnets.mnet_interface.MainNetInterface.hyper_shapes_learned.

	w_val (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The mean of the distribution with
which output head weight matrices are initialized. Note, each
weight tensor prescribed by
hnets.hnet_interface.HyperNetInterface.target_shapes is
produced via an independent linear output head.

One may either specify a list of numbers having the same length
as hnets.hnet_interface.HyperNetInterface.target_shapes
or specify a dictionary which may have as keys the tensor names
occurring in
mnets.mnet_interface.MainNetInterface.param_shapes_meta
and the corresponding mean value for the weight matrices of all
output heads producing this type of tensor.
If a list is provided, entries may be None and if a
dictionary is provided, not all types of parameter tensors need
to be specified. For tensors, for which no value is specified,
the default value will be used. The default values for tensor
types 'weight' and 'bias' are calculated based on the
proposed hyperfan-initialization. For other tensor types the
actual hypernet outputs should be drawn from the following
distributions

	'bn_scale': [image: w \sim \delta(w - 1)]

	'bn_shift': [image: w \sim \delta(w)]

	'cm_scale': [image: w \sim \delta(w - 1)]

	'cm_shift': [image: w \sim \delta(w)]

	'embedding': [image: w \sim \mathcal{N}(0, 1)]

Which would correspond to the following passed arguments

w_val = {
 'bn_scale': 0,
 'bn_shift': 0,
 'cm_scale': 0,
 'cm_shift': 0,
 'embedding': 0
}
w_var = {
 'bn_scale': 0,
 'bn_shift': 0,
 'cm_scale': 0,
 'cm_shift': 0,
 'embedding': 0
}
b_val = {
 'bn_scale': 1,
 'bn_shift': 0,
 'cm_scale': 1,
 'cm_shift': 0,
 'embedding': 0
}
b_var = {
 'bn_scale': 0,
 'bn_shift': 0,
 'cm_scale': 0,
 'cm_shift': 0,
 'embedding': 1
}

	w_var (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The variance of the distribution
with which output head weight matrices are initialized. Variance
values of zero means that weights are set to a constant defined
by w_val. See description of argument w_val for more
details.

	b_val (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The mean of the distribution
with which output head bias vectors are initialized.
See description of argument w_val for more details.

	b_var (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The variance of the distribution
with which output head bias vectors are initialized.
See description of argument w_val for more details.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	
	(....) – See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	condition (int [https://docs.python.org/3/library/functions.html#int], optional) – This argument will be passed as argument
stats_id to the method
utils.batchnorm_layer.BatchNormLayer.forward() if batch
normalization is used.

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_cond_in_emb(cond_id)

	Get the cond_id-th (conditional) input embedding.

	Parameters:

	cond_id (int [https://docs.python.org/3/library/functions.html#int]) – Determines which input embedding should be returned
(the ID has to be between 0 and num_cond_embs-1, where
num_cond_embs denotes the corresponding constructor
argument).

	Returns:

	(torch.nn.Parameter)

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Example Instantiations of a Structured Chunked MLP - Hypernetwork

The module hnets.structured_hmlp_examples provides helpers for example
instantiations of hnets.structured_mlp_hnet.StructuredHMLP.

Functions in this module typically take a given main network and produce the
constructor arguments chunk_shapes, num_per_chunk and assembly_fct
of class hnets.structured_mlp_hnet.StructuredHMLP.

Note

These examples should be used with care. They are meant as inspiration and
might not cover all possible usecases.

	hypnettorch.hnets.structured_hmlp_examples.resnet_chunking(net)

	Design a structured chunking for a ResNet.

	hypnettorch.hnets.structured_hmlp_examples.wrn_chunking(net)

	Design a structured chunking for a Wide-ResNet (WRN).

	
hypnettorch.hnets.structured_hmlp_examples.resnet_chunking(net, gcd_chunking=False)

	Design a structured chunking for a ResNet.

A resnet as implemented in class mnets.resnet.ResNet consists
roughly of 5 parts:

	An input convolutional layer with weight shape [C_1, C_in, 3, 3]

	3 blocks of 2*n convolutional layers each where the first layer has
shape [C_i, C_j, 3, 3] with [image: i \in \{2, 3, 4\}] and
[image: j \equiv i-1] and the remaining 2*n-1 layers have a weight
shape of [C_i, C_i, 3, 3].

	A final fully connected layer of shape [n_classes, n_hidden].

Each layer may additionally have a bias vector and (if batch normalization
is used) a scale and shift vector.

For instance, if a resnet with biases and batchnorm is used and the first
layer will be produced as one structured chunk, then the first chunk shape
(see return value chunk_shapes) will be:
[[C_1, C_in, 3, 3], [C_1], [C_1], [C_1]].

This function will chunk layer wise (i.e., a chunk always comprises up to
4 elements: weights tensor, bias vector, batchnorm scale and shift). By
default, layers with the same shape are grouped together. Hence, the
standard return value contains 8 chunk shapes (input layer, first layer of
each block, remaining layers of each block (which all have the same shape)
and the fully-connected output layer). Therefore, the return value
num_per_chunk would be as follows:
[1, 1, 2*n-1, 1, 2*n-1, 1, 2*n-1, 1].

	Parameters:

	
	net (mnets.resnet.ResNet) – The network for which the structured chunking
should be devised.

	gcd_chunking (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the layers within the 3 resnet blocks
will be produced by 4 chunks. Therefore, the greatest common divisor
(gcd) of the feature sizes C_1, C_2, C_3, C_4 is computed and
the 6 middle chunk_shapes produced by default are replaced by 4
chunk shapes [[C_gcd, C_i, 3, 3], [C_gcd]] (assuming no
batchnorm is used). Note, the first and last entry of
chunk_shapes will remain unchanged by this option.

Hence, len(num_per_chunk) = 6 in this case.

	Returns:

	Tuple containing the following arguments that can be passed
to the constructor of class
hnets.structured_mlp_hnet.StructuredHMLP.

	chunk_shapes (list)

	num_per_chunk (list)

	assembly_fct (func)

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
hypnettorch.hnets.structured_hmlp_examples.wrn_chunking(net, ignore_bn_weights=True, ignore_out_weights=True, gcd_chunking=False)

	Design a structured chunking for a Wide-ResNet (WRN).

This function is in principle similar to function resnet_chunking(),
but with the goal to provide a chunking scheme that is identical to the one
proposed in (accessed August 18th, 2020):

Sacramento et al., “Economical ensembles with hypernetworks”, 2020
https://arxiv.org/abs/2007.12927

Therefore, a WRN as implemented in class mnets.wide_resnet.WRN
is required. For instance, a WRN-28-10-B(3,3) can be instantiated as
follows, using batchnorm but no biases in all convolutional layers:

wrn = WRN(in_shape=(32, 32, 3), num_classes=10, n=4, k=10,
 num_feature_maps=(16, 16, 32, 64), use_bias=False,
 use_fc_bias=True, no_weights=False, use_batch_norm=True)

We denote channel sizes by [C_in, C_1, C_2, C_3, C_4], where C_in is
the number of input channels and the remaining C_1, C_2, C_3, C_4 denote
the channel size per convolutional group. The widening factor is denoted by
k.

In general, there will be up to 11 layer groups, which will be realized
by separate hypernetworks (cmp table S1 in
Sacramento et al. [https://arxiv.org/pdf/2007.12927.pdf]):

	0: Input layer weights. If the network’s convolutional layers have
biases and batchnorm layers while ignore_bn_weights=False, then this
hypernet will produce weights of shape
[[C_1, C_in, 3, 3], [C_1], [C_1], [C_1]]. However, without
convolutional bias terms and with ignore_bn_weights=True, the hypernet
will only produce weights of shape [[C_1, C_in, 3, 3]]. This
specification applies to all layer groups generating convolutional layers.

	1: This layer group will generate the weights of the first
convolutional layer in the first convolutional group, e.g.,
[[k*C_2, C_1, 3, 3]]. Let’s define
r = max(k*C_2/C_1, C_1/k*C_2). If r=1 or r=2 or
gcd_chunking=True, then this group is merged with layer group 2.

	2: The remaining convolutional layer of the first convolutional group.
If r=1, r=2 or gcd_chunking=True, then all convolutional
layers of the first group are generated. However, if biases or batch norm
weights have to be generated, then this form of chunking leads to
redundancy. Imagine bias terms are used and that the first layer in this
convolutional group has weights [[160, 16, 3, 3], [160]], while the
remaining layers have shape [[160, 160, 3, 3], [160]]. If that’s the
case, the hypernetwork output will be of shape
[[160, 16, 3, 3], [160]], meaning that 10 chunks have to be produced
for each except the first layer. However, this means that per
convolutional layer 10 bias vectors are generated, while only one is
needed and therefore the other 9 will go to waste.

	3: Same as 1 for the first layer in the second convolutional
group.

	4 (labelled as 3 in the paper): Same as 2 for all
convolutional layers (potentially excluding the first) in the second
convolutional group.

	5: Same as 1 for the first layer in the third convolutional
group.

	6 (labelled as 4 in the paper): Same as 2 for all
convolutional layers (potentially excluding the first) in the third
convolutional group.

	7 (labelled as 5 in the paper): If existing, this hypernetwork
produces the 1x1 convolutional layer realizing the residual connection
connecting the first and second residual block in the first convolutional
group.

	8 (labelled as 6 in the paper): Same as 7 but for the first
residual connection in the second convolutional group.

	9 (labelled as 7 in the paper): Same as 7 but for the first
residual connection in the third convolutional group.

	10: This hypernetwork will produce the weights of the fully connected
output layer, if ignore_out_weights=False.

Thus, the WRN weights would maximally be produced by 11 different sub-
hypernetworks.

Note

There is currently an implementation mismatch, such that the
implementation provided here does not 100% mimic the architecture
described in
Sacramento et al. [https://arxiv.org/pdf/2007.12927.pdf].

To be specific, given the wrn generated above, the hypernetwork
output for layer group 2 will be of shape [160, 160, 3, 3],
while the paper expects a vertical chunking with a hypernet output of
shape [160, 80, 3, 3].

	Parameters:

	
	net (mnets.wide_resnet.WRN) – The network for which the structured
chunking should be devised.

	ignore_bn_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, even if the given net has
batchnorm weights, they will be ignored by this function.

	ignore_out_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, output weights (layer group
10) will be ignored by this function.

	gcd_chunking (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, layer groups 1, 3 and 5
are ignored. Instead, the greatest common divisor (gcd) of input and
output feature size in a convolutional group is computed and weight
tensors within a convolutional group (i.e., layer groups 2,
4 and 6) are chunked according to this value. However, note
that this will cause the generation of unused bias and batchnorm
weights if existing (cp. description of layer group 2).

	Returns:

	Tuple containing the following arguments that can be passed
to the constructor of class
hnets.structured_mlp_hnet.StructuredHMLP.

	chunk_shapes (list)

	num_per_chunk (list)

	assembly_fct (func)

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

Structured Chunked MLP - Hypernetwork

The module hnets.structured_mlp_hnet contains a Structured Chunked
Hypernetwork, i.e., a hypernetwork that is aware of the target network
architecture and choses a smart way of chunking.

In contrast to the Chunked Hypernetwork
hnets.chunked_mlp_hnet.ChunkedHMLP, which just flattens the
target_shapes and splits them into equally sized chunks (ignoring the
underlying network structure in terms of layers or type of weight (bias, kernel,
…)), the StructuredHMLP aims to preserve this structure when chunking
the target weights.

Example

Assume target_shapes = [[3], [3], [10, 5], [10], [20, 5], [20]].

There are now many ways to split those weights into chunks. In the simplest
case, we consider only one chunk and produce all weights at once with a
Full Hypernetwork hnets.mlp_hnet.HMLP.

Another simple scenario would be to realize that all shapes except the first
two are different. So, we create a total of 5 internal hypernetworks for
those 6 weight tensors, where the first internal hypernetwork would produce
weights of shape [3] upon receiving an external input plus an internal
chunk embedding. See below for an example instantiation:

def assembly_fct(list_of_chunks):
 assert len(list_of_chunks) == 4
 ret = []
 for chunk in list_of_chunks:
 ret.extend(chunk)
 return ret

hnet = StructuredHMLP([[3], [3], [10, 5], [10], [20, 5], [20]],
 [[[3]], [[10, 5], [10]], [[20, 5], [20]]], [2, 1, 1], 8,
 {'layers': [10,10]}, assembly_fct, cond_chunk_embs=True,
 uncond_in_size=0, cond_in_size=0, verbose=True,
 no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

A smarter way of chunking would be to realize that the last two shapes are
just twice the middle two shapes. Hence, we could instantiate two internal
hypernetworks. The first one would be used to produce tensors of shape
[3] and therefore require 2 chunk embeddings. The second internal
hypernetwork would be used to create tensors of shape [10, 5], [10],
requiring 3 chunk embeddings (the last two chunks together make up the last
two target tensors of shape [20, 5], [20]).

def assembly_fct(list_of_chunks):
 assert len(list_of_chunks) == 5
 ret = [*list_of_chunks[0], *list_of_chunks[1], *list_of_chunks[2]]
 for t, tensor in enumerate(list_of_chunks[3]):
 ret.append(torch.cat([tensor, list_of_chunks[4][t]], dim=0))
 return ret

hnet = StructuredHMLP([[3], [3], [10, 5], [10], [20, 5], [20]],
 [[[3]], [[10, 5], [10]]], [2, 3], 8,
 {'layers': [10,10]}, assembly_fct, cond_chunk_embs=True,
 uncond_in_size=0, cond_in_size=0, verbose=True,
 no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

Example

This hypernetwork can also be used to realize soft-sharing via templates as
proposed in Savarese et al. [https://arxiv.org/abs/1902.09701]

Assume a target network with 3 layers of identical weight shapes
target_shapes=[s, s, s], where s denotes a weight shape.

If we want to create these 3 weight tensors via a linear combination of two
templates, we could create an instance of StructuredHMLP as
follows:

def assembly_fct(list_of_chunks):
 assert len(list_of_chunks) == 3
 return [list_of_chunks[0][0], list_of_chunks[1][0],
 list_of_chunks[2][0]]

hnet = StructuredHMLP([s, s, s], [[s]], [3], 2,
 {'layers': [], 'use_bias': False}, assembly_fct
 cond_chunk_embs=True, uncond_in_size=0, cond_in_size=0,
 verbose=True, no_uncond_weights=False, no_cond_weights=False,
 num_cond_embs=1)

There will be one underlying linear hypernetwork, that expects a
2-dimensional embedding input. The computation of the linear hypernetwork
can be seen as [image: t_i = W e_i]. Where [image: t_i] is a tensor of shape
s containing the weights of the [image: i]-th chunk (with chunk embedding
[image: e_i]).

The 2 templates are encoded in the hypernetwork weights [image: W], whereas
the chunk embedding represents the coefficients of the linear combination.

	
class hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP(target_shapes, chunk_shapes, num_per_chunk, chunk_emb_sizes, hmlp_kwargs, assembly_fct, cond_chunk_embs=False, uncond_in_size=0, cond_in_size=8, verbose=True, no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], HyperNetInterface

Implementation of a structured chunked fully-connected hypernet.

This network builds a series of full hypernetworks internally (hidden from
the user). There will be one internal hypernetwork for each element of
chunk_shapes. Those internal hypernetworks can produce an arbitrary
amount of chunks (as defined by num_per_chunk). All those chunks are
finally assembled by function assembly_fct to produce tensors according
to target_shapes.

Note

It is possible to set uncond_in_size and cond_in_size to zero
if cond_chunk_embs is True and there are no zeroes in argument
chunk_emb_sizes.

	Parameters:

	
	(....) – See constructor arguments of class
hnets.mlp_hnet.HMLP.

	chunk_shapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of lists of lists of integers. Each chunk will
be produced by its own internal hypernetwork (instance of class
hnets.mlp_hnet.HMLP). Hence, this list can be seen as a
list of target_shapes, passed to the underlying internal
hypernets.

	num_per_chunk (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of the same length as chunk_shapes, that
determines how often each of these chunks has to be produced.

	chunk_emb_sizes (list [https://docs.python.org/3/library/stdtypes.html#list] or int [https://docs.python.org/3/library/functions.html#int]) – List with the same length as
chunk_shapes or single integer that will be expanded to this
length. Determines the chunk embedding size per internal
hypernetwork.

Note

Embeddings will be initialized with a normal distribution using
zero mean and unit variance.

Note

If the corresponding entry in num_per_chunk is 1, then
an embedding size might be 0, which means there won’t be
chunk embeddings for the corresponding internal hypernetwork.

	hmlp_kwargs (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – List of dictionaries or a single dictionary
that will be expanded to such a list. Those dictionaries may contain
keyword arguments for each instance of class
hnets.mlp_hnet.HMLP that will be generated.

The following keys are not permitted in these dictionaries:
- uncond_in_size
- cond_in_size
- no_uncond_weights
- no_cond_weights
- num_cond_embs
Those arguments will be determined by the corresponding keyword
arguments of this class!

	assembly_fct (func) – A function handle that takes the produced chunks
and converts them into tensors with shapes target_shapes.

The function handle must have the signature:
assembly_fct(list_of_chunks).
The argument list_of_chunks is a list of lists of tensors. The
function is expected to return a list of tensors, each of them
having a shape as specified by target_shapes.

Example

Assume chunk_shapes=[[[3]], [[10, 5], [5]]] and
num_per_chunk=[2, 1]. Then the argument list_of_chunks
will be a list of lists of tensors as follows:
[[tensor(3)], [tensor(3)], [tensor(10, 5), tensor(5)]].

If target_shapes=[[3], [3], [10, 5], [5]], then the output
of assembly_fct is expected to be a list of tensors as
follows: [tensor(3), tensor(3), tensor(10, 5), tensor(5)].

Note

This function considers one sample at a time, even if a batch
of inputs is processed.

Note

It is assumed that assembly_fct does not further process the
incoming weights. Otherwise, the attributes
mnets.mnet_interface.MainNetInterface.has_fc_out and
mnets.mnet_interface.MainNetInterface.has_linear_out
might be invalid.

	cond_chunk_embs (bool [https://docs.python.org/3/library/functions.html#bool]) – See documentation of class
hnets.chunked_mlp_hnet.ChunkedHMLP

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
property chunk_emb_shapes

	List of lists of integers. The list contains the shape of the chunk
embeddings required per forward sweep.

Note

Some internal hypernets might not need chunk embeddings if the
corresponding entry in chunk_emb_sizes is zero.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property cond_chunk_embs

	Whether chunk embeddings are unconditional (False) or conditional
(True) parameters. See constructor argument cond_chunk_embs.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None, condition=None, ret_format='squeezed')

	Compute the weights of a target network.

	Parameters:

	
	(....) – See docstring of method
hnets.mlp_hnet.HMLP.forward().

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided as dict and
chunk embeddings are considered conditional (see constructor
argument cond_chunk_embs), then the additional key
chunk_embs can be used to pass a batch of chunk embeddings.
This option is mutually exclusive with the option of passing
cond_id. Note, if conditional inputs via cond_input are
expected, then the batch sizes must agree.

A batch of chunk embeddings is expected to be a list of tensors
of shape
[B, *ce_shape], where B denotes the batch size and
ce_shape is a shape from list chunk_emb_shapes.

	Returns:

	See docstring of method
hnets.hnet_interface.HyperNetInterface.forward().

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_chunk_embs(cond_id=None)

	Get the chunk embeddings.

	Parameters:

	cond_id (int [https://docs.python.org/3/library/functions.html#int]) – Is mandatory if constructor argument
cond_chunk_embs was set. Determines the set of chunk
embeddings to be considered.

	Returns:

	A list of tensors with shapes prescribed by
chunk_emb_shapes.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_cond_in_emb(cond_id)

	Get the cond_id-th (conditional) input embedding.

	Parameters:

	(....) – See docstring of method
hnets.mlp_hnet.HMLP.get_cond_in_emb().

	Returns:

	(torch.nn.Parameter)

	
property internal_hnets

	The list of internal hypernetworks (instances of class
hnets.mlp_hnet.HMLP) which are created to produce the
individual chunks according to constructor argument chunk_shapes.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property num_chunks

	The total number of chunks that make up the hypernet output.

This attribute simply corresponds to np.sum(num_per_chunk).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Hyperparameter Searches

Contents

	Hyperparameter Searches

	A general framework to perform hyperparameter searches on single- and multi-GPU systems

	How to run a hyperparameter search

	Execute on a single- or multi-GPU system without job scheduling

	Execute on a cluster with IBM Platform LSF

	Execute on a cluster with Slurm Workload Manager

	Execute on a cluster with unsupported job scheduler

	Postprocessing

	How to use this framework with your simulation

	Gather random seeds for a given experiment

	Hyperparameter Search Configuration File

	Hyperparameter Search - Postprocessing

	Hyperparameter Search Script

A general framework to perform hyperparameter searches on single- and multi-GPU systems

Note, we currently only support simple grid searches.

How to run a hyperparameter search

The main script in this package is hypnettorch.hpsearch.hpsearch.

$ python -m hypnettorch.hpsearch.hpsearch --help

Though, before being able to run a hyperparameter search, the search grid has to be configured. Therefore, your simulation has its own implementation of the configuration file hypnettorch.hpsearch.hpsearch_config_template. Please refer to the corresponding documentation to obtain information on how to configure a hyperparameter search.

Execute on a single- or multi-GPU system without job scheduling

The simplest way of execution is to run all hyperparameter configurations sequentially in the foreground. For instance, on a computer without GPUs, you could start the hpsearch on the CPU as follows

$ python -m hypnettorch.hpsearch.hpsearch --visible_gpus=-1

Though, assuming that your simulations automatically run on a visible GPU, you can also apply this sequential foreground execution to a GPU of your choice (e.g., GPU 2):

$ CUDA_VISIBLE_DEVICES=2 python -m hypnettorch.hpsearch.hpsearch --visible_gpus=-1

Alternatively, the hpsearch may assign GPU ressources to jobs. In this case, multiple hyperparameter configurations may run in parallel (on multiple GPUs as well as multiple runs per GPU). For this operation mode, you are required to install the package GPUtil [https://github.com/anderskm/gputil].

Please carefully study the arguments of the hpsearch.

$ python -m hypnettorch.hpsearch.hpsearch --help

Assume you may want to run your search on GPUs 0,1,2,7 and that there should be a hard limit of 5 jobs assigned to a GPU by the hpsearch (which you decide based on available CPU and RAM ressources). Note, option --max_num_jobs_per_gpu currently does not account for other processes that may be running on the GPU which are not assigned by this hpsearch. In addition, a run may only be assigned to a GPU if at maximum 75% of its memory is in use and its compute utilization is maximally at 60%. Since runs take some time to properly startup and allocate GPU ressources, you additionally specify argument --sim_startup_time. Every time a job is assigned to a GPU, this time has to pass before a new job may be assigned (such that the first job had time to acquire GPU memory and compute ressources)

$ python -m hypnettorch.hpsearch.hpsearch --visible_gpus=0,1,2,7 --max_num_jobs_per_gpu=5 --allowed_memory=0.75 --allowed_load=0.6 --sim_startup_time=30

Execute on a cluster with IBM Platform LSF

You may also run the hpsearch on a cluster that uses the IBM Platform LSF job scheduler. In this case, you have to install the package bsub [https://pypi.org/project/bsub/]. To tell the hpsearch that should schedule jobs via bsub, simply append the options --run_cluster --scheduler=lsf. Here is an example call:

$ bsub -n 1 -W 120:00 -e hpsearch_mysim.err -o hpsearch_mysim.out -R "rusage[mem=8000]" python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --run_cluster --scheduler=lsf --num_jobs=50 --num_hours=24 --num_searches=1000 --resources="\"rusage[mem=8000, ngpus_excl_p=1]\""

In the example above, the hpsearch should run for 120 hours on the cluster, requiring 8GB of RAM during that time. Individual jobs will run for 24 hours. The hpsearch will maximally explore 1000 hyperparameter configurations. At most 50 jobs will be scheduled in parallel (new jobs will be scheduled as soon as old ones finished until the hard limit of 1000 runs is reached). Each job will require 1 GPU and 8GB of RAM.

Execute on a cluster with Slurm Workload Manager

The hpsearch can also be run on a cluster with the SLURM job scheduler via the arguments --run_cluster --scheduler=slurm. Therefore, simply create a job script my_hpsearch.sh for the hpsearch as follows

#!/bin/bash
#SBATCH --job-name=hpsearch
#SBATCH --output=hpsearch_%j.out
#SBATCH --error=hpsearch_%j.err
#SBATCH --time=24:00:00
#SBATCH --mem=8G
python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --run_cluster --scheduler=slurm --slurm_mem=8G --slurm_gres=gpu:1 --num_jobs=25 --num_hours=4

The hpsearch can be executed via the command:

$ sbatch my_hpsearch.sh

Execute on a cluster with unsupported job scheduler

Unfortunately, you can only execute the hpsearch on a cluster with unsupported job scheduler in the sequential foreground mode via --visible_gpus=-1. For instance, on a cluster running the SLURM job scheduler (note, SLURM is supported, see above) you can run the hpsearch in sequential forground mode via a script my_hpsearch.sh:

#!/bin/bash
#SBATCH --job-name=hpsearch
#SBATCH --output=hpsearch_%j.out
#SBATCH --error=hpsearch_%j.err
#SBATCH --time=120:00:00
#SBATCH --mem=8G
#SBATCH --gres gpu:1
python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --visible_gpus=-1

Note, in this case, you request the ressources required for your jobs for the hpsearch itself. Now, you could execute the hpsearch via

$ sbatch my_hpsearch.sh

Postprocessing

The post processing script hypnettorch.hpsearch.hpsearch_postprocessing is currently very rudimentary. Its most important task is to make sure that the results of all completed runs are listed in a CSV file (note, that the hpsearch might be killed prematurely while some jobs are still running).

Please checkout

$ python3 -m hypnettorch.hpsearch.hpsearch_postprocessing --help

How to use this framework with your simulation

In order to utilize the scripts in this subpackage, you have to create a copy of the template hypnettorch.hpsearch.hpsearch_config_template and fill the template with content as described inside the module. For instance, see probabilistic.prob_mnist.hpsearch_config_split_bbb [https://github.com/chrhenning/posterior_replay_cl/blob/master/probabilistic/prob_mnist/hpsearch_config_split_bbb.py] as an example.

Additionally, you need to make sure that your simulation has a command-line option like --out_dir (that specifies the output directory) and that your simulation writes a performance summary file, that can be used to evaluate simulations.

Gather random seeds for a given experiment

This script can be used to gather random seeds for a given configuration. Thus,
it is intended to test the robustness of this certain configuration.

The configuration can either be provided directly, or the path to a simulation
output folder or hyperparameter search output folder is provided. A simulation
output folder is recognized by the file config.pickle which contains the
configuration, i.e., all command-line arguments (cf. function
hypnettorch.sim_utils.setup_environment()). If a hyperparameter search
output folder (cf. hypnettorch.hpsearch.hpsearch) is provided, the best
run will be selected.

Example 1: Assume you are in the simulation directory and want to start the
random seed gathering from there for a simulation in folder
./out/example_run. Note, we assume here that the base run in
./out/example_run finished successfully and can already be used
as 1 random seed.

$ python -m hypnettorch.hpsearch.gather_random_seeds --grid_module=my_hpsearch_config --run_dir=./out/example_run --num_seeds=10 | tee /dev/tty | awk 'END{print}' | xargs bash -c 'echo --grid_module=$0 --grid_config=$1 --force_out_dir --dont_force_new_dir --out_dir=$2' | xargs python -m hypnettorch.hpsearch.hpsearch

Example 2: Alternatively, the hpsearch can be started directly via the
option --start_gathering.

$ python -m hypnettorch.hpsearch.gather_random_seeds --grid_module=my_hpsearch_config --run_dir=./out/example_run --num_seeds=4 --start_gathering --config_name=example_run_seed_gathering

Example 3: An example instantiation of this script can be found in module
probabilistic.regression.gather_seeds_bbb [https://git.io/J9quN].

	
hypnettorch.hpsearch.gather_random_seeds.build_grid_and_conditions(cmd_args, config, seeds_list)

	Build the hpconfig for the random seed gathering.

	Parameters:

	
	cmd_args – CLI arguments of this script.

	config – The config to be translated into a search grid.

	seeds_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – The random seeds to be gathered.

(tuple): Tuple containing:

	grid (dict): The search grid.

	conditions (list): Constraints for the search grid.

	
hypnettorch.hpsearch.gather_random_seeds.get_best_hpsearch_config(out_dir)

	Load the config file from the best run of a hyperparameter search.

This file loads the results of the hyperparameter search, and select the
configuration that lead to the best performance score.

	Parameters:

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the hpsearch result folder.

	Returns:

	Tuple containing:

	config: The config of the best run.

	best_out_dir: The path to the best run.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
hypnettorch.hpsearch.gather_random_seeds.get_hpsearch_call(cmd_args, num_seeds, grid_config, hpsearch_dir=None)

	Generate the command line for the hpsearch.

	Parameters:

	
	cmd_args – The command line arguments.

	num_seeds (int [https://docs.python.org/3/library/functions.html#int]) – Number of searches.

	grid_config (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location of search grid.

	hpsearch_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Where the hpsearch should write its
results to.

	Returns:

	The command line to be executed.

	Return type:

	(str [https://docs.python.org/3/library/stdtypes.html#str])

	
hypnettorch.hpsearch.gather_random_seeds.get_single_run_config(out_dir)

	Load the config file from a specified experiment.

	Parameters:

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the experiment.

	Returns:

	The Namespace object containing argument names and values.

	
hypnettorch.hpsearch.gather_random_seeds.run(grid_module=None, results_dir='./out/random_seeds', config=None, ignore_kwds=None, forced_params=None, summary_keys=None, summary_sem=False, summary_precs=None, hpmod_path=None)

	Run the script.

	Parameters:

	
	grid_module (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the reference module which contains
the hyperparameter search config that can be modified to gather
random seeds.

	results_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path where the hpsearch should store
its results.

	config – The Namespace object containing argument names and values.
If provided, all random seeds will be gathered from zero, with no
reference run.

	ignore_kwds (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of keywords in the config file
to exclude from the grid.

	forced_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dict of key-value pairs specifying
hyperparameter values that should be fixed across runs.

	summary_keys (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If provided, those mean and std of those
summary keys will be written by function
write_seeds_summary(). Otherwise, the performance key defined
in grid_module will be used.

	summary_sem (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether SEM or SD should be calculated in function
write_seeds_summary().

	summary_precs (list [https://docs.python.org/3/library/stdtypes.html#list] or int [https://docs.python.org/3/library/functions.html#int], optional) – The precision with which the
summary statistics according to summary_keys should be listed.

	hpmod_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If the hpsearch doesn’t reside in the same
directory as the calling script, then we need to know from where to
start the hpsearch.

	
hypnettorch.hpsearch.gather_random_seeds.write_seeds_summary(results_dir, summary_keys, summary_sem, summary_precs, ret_seeds=False, summary_fn=None, seeds_summary_fn='seeds_summary_text.txt')

	Write the MEAN and STD (resp. SEM) while aggregating all seeds to text
file.

	Parameters:

	
	results_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The results directory.

	summary_keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – See argument summary_keys of function
run().

	summary_sem (bool [https://docs.python.org/3/library/functions.html#bool]) – See argument summary_sem of function
run().

	summary_precs (list [https://docs.python.org/3/library/stdtypes.html#list] or int [https://docs.python.org/3/library/functions.html#int], optional) – See argument summary_precs of
function run().

	summary_fn (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, this will determine
the name of the summary file within individual runs.

	seeds_summmary_fn (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name to give to the summary
file across all seeds.

	ret_seeds (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If activated, the random seeds of all
considered runs are returned as a list.

Hyperparameter Search Configuration File

	hypnettorch.hpsearch.hpsearch_config_template.conditions

	Define exceptions for the grid search.

	hypnettorch.hpsearch.hpsearch_config_template.grid

	Parameter grid for grid search.

Note, this is just a template for a hyperparameter configuration and not an
actual source file.

A configuration file for our custom hyperparameter search script
hypnettorch.hpsearch.hpsearch. To setup a configuration file for your
simulation, simply create a copy of this template and follow the instructions in
this file to fill all defined attributes.

Once the configuration is setup for your simulation, you simply need to modify
the fields grid and conditions to prepare a new grid search.

Note, if you are implementing this template for the first time, you also
have to modify the code below the “DO NOT CHANGE THE CODE BELOW” section. Normal
users may not change the code below this heading.

	
hypnettorch.hpsearch.hpsearch_config_template.conditions = [({'option1': [1]}, {'option2': [-1]})]

	Define exceptions for the grid search.

Sometimes, not the whole grid should be searched. For instance, if an SGD
optimizer has been chosen, then it doesn’t make sense to search over multiple
beta2 values of an Adam optimizer.
Therefore, one can specify special conditions or exceptions.
Note* all conditions that are specified here will be enforced. Thus, they
overwrite the grid options above.

How to specify a condition? A condition is a key value tuple: whereas as the
key as well as the value is a dictionary in the same format as in the
grid above. If any configurations matches the values specified in the
“key” dict, the values specified in the “values” dict will be searched instead.

Note, if arguments are commented out above but appear in the conditions, the
condition will be ignored.

Also keep in mind, that the hpsearch is not checking for conflicting conditions
and they are enforced sequentially. For instance, assume condition 2 would
change commands such that condition 1 would fire again. But condition 1 is never
tested again, so these commands would make it into the final hpsearch (unless
later conditions modify them again).

	
hypnettorch.hpsearch.hpsearch_config_template.grid = {'flag_option': [False, True], 'float_option': [0.5, 1.0], 'string_option': ['"example string"', '"another string"']}

	Parameter grid for grid search.

Define a dictionary with parameter names as keys and a list of values for
each parameter. For flag arguments, simply use the values [False, True].
Note, the output directory is set by the hyperparameter search script.
Therefore, it always assumes that the argument –out_dir exists and you
should not add out_dir to this grid!

Example

grid = {'option1': [10], 'option2': [0.1, 0.5],
 'option3': [False, True]}

This dictionary would correspond to the following 4 configurations:

python3 SCRIPT_NAME.py --option1=10 --option2=0.1
python3 SCRIPT_NAME.py --option1=10 --option2=0.5
python3 SCRIPT_NAME.py --option1=10 --option2=0.1 --option3
python3 SCRIPT_NAME.py --option1=10 --option2=0.5 --option3

If fields are commented out (missing), the default value is used.
Note, that you can specify special conditions below.

Hyperparameter Search - Postprocessing

A postprocessing for a hyperparameter search that has been executed via the
script hypnettorch.hpsearch.hpsearch.

Hyperparameter Search Script

A very simple hyperparameter search. The results will be gathered as a CSV file.

Here is an example on how to start an hyperparameter search on a cluster using
bsub:

$ bsub -n 1 -W 48:00 -e hpsearch.err -o hpsearch.out \
 -R "rusage[mem=8000]" \
 python -m hypnettorch.hpsearch.hpsearch --run_cluster --num_jobs=20

For more demanding jobs (e.g., ImageNet), one may request more resources:

$ bsub -n 1 -W 96:00 -e hpsearch.err -o hpsearch.out \
 -R "rusage[mem=16000]" \
 python -m hypnettorch.hpsearch.hpsearch --run_cluster --num_jobs=20 \
 --num_hours=48 --resources="\"rusage[mem=8000, ngpus_excl_p=1]\""

Please fill in the grid parameters in the corresponding config file (see
command line argument grid_module).

	
hypnettorch.hpsearch.hpsearch.hpsearch_cli_arguments(parser, show_num_searches=True, show_out_dir=True, dout_dir='./out/hyperparam_search', show_grid_module=True)

	The CLI arguments of the hpsearch.

	
hypnettorch.hpsearch.hpsearch.run(argv=None, dout_dir='./out/hyperparam_search')

	Run the hyperparameter search script.

	Parameters:

	
	argv (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If provided, it will be treated as a list of
command-line argument that is passed to the parser in place of
sys.argv.

	dout_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The default value of command-line option
--out_dir.

	Returns:

	The path to the CSV file containing the results of this search.

	Return type:

	(str [https://docs.python.org/3/library/stdtypes.html#str])

Main Networks

Contents

	Main Networks

	Bidirectional Recurrent Neural Network

	A bio-plausible convolutional network for CIFAR

	Interface for Classifiers

	LeNet

	Multi-Layer Perceptron

	Main-Network Interface

	ResNet

	ResNet for ImageNet

	SimpleRNN

	Wide-ResNet

	The Convnet used by Zenke et al. for CIFAR-10/100

Note

All main networks should inherit from the abstract class hypnettorch.mnets.mnet_interface.MainNetInterface to provide a consistent interface for users.

Bidirectional Recurrent Neural Network

This module implements a bidirectional recurrent neural networt (BiRNN).
To realize recurrent layers, it utilizes class
mnets.simple_rnn.SimpleRNN. Hence different kinds of BiRNNs can be
realized, such as Elman-type BiRNNs and BiLSTMs. In particular, this class
implements the BiRNN in the following manner. Given an input [image: x_{1:T}],
the forward RNN is run to produce hidden states [image: \hat{h}_{1:T}^{(f)}]
and the backward RNN is run to produce states [image: \hat{h}_{1:T}^{(b)}].

These hidden states are concatenated to produce the final hidden state which
is the output of the recurrent layer(s):
[image: h_t = \text{concat}(\hat{h}_t^{(f)}, \hat{h}_t^{(b)})].

Those inputs are subsequently processed by an instance of class
mnets.mlp.MLP to produce the final network outputs.

	
class hypnettorch.mnets.bi_rnn.BiRNN(rnn_args={}, mlp_args=None, preprocess_fct=None, no_weights=False, verbose=True)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], MainNetInterface

Implementation of a bidirectional RNN.

Note

The output is non-linear if the last layer is recurrent! Otherwise,
logits are returned (cmp. attribute
mnets.mnet_interface.MainNetInterface.has_fc_out).

Example

Here is an example instantiation of a BiLSTM with a single bidirectional
layer of dimensionality 256, assuming 100 dimensional inputs and
10 dimensional outputs.

net = BiRNN(rnn_args={'n_in': 100, 'rnn_layers': [256],
 'use_lstm': True, 'fc_layers_pre': [],
 'fc_layers': []},
 mlp_args={'n_in': 512, 'n_out': 10,
 'hidden_layers': []},
 no_weights=False)

	Parameters:

	
	rnn_args (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A dictionary of arguments for an instance of
class mnets.simple_rnn.SimpleRNN. These arguments will be
used to create two instances of this class, one representing the
forward RNN and one the backward RNN.

Note, each of these instances may contain multiple layers, even
non-recurrent layers. The outputs of such an instance are considered
the hidden activations [image: \hat{h}_{1:T}^{(f)}] or
[image: \hat{h}_{1:T}^{(b)}], respectively.

To realize multiple bidirectional layers (which in itself can be
multi-layer RNNs), one may provide a list of dictionaries. Each
entry in such list will be used to generate a single bidirectional
layer (i.e., consisting of two instances of class
mnets.simple_rnn.SimpleRNN). Note, the input size of
each new layer has to be twice the size of [image: \hat{h}_t^{(f)}]
from the previous layer.

	mlp_args (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dictionary of arguments for class
mnets.mlp.MLP. The input size of such an MLP should be
twice the size of [image: \hat{h}_t^{(f)}]. If None, then the
output of the last bidirectional layer is considered the output of
the network.

	preprocess_fct (func, optional) – A function handle can be provided,
that will process inputs x passed to the method forward().
An example usecase could be the translation or selection of word
embeddings.

The function handle must have the signature:
preprocess_fct(x, seq_lengths=None). See the corresponding
argument descriptions of method forward().The function is
expected to return the preprocessed x.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – See parameter no_weights of class
mnets.mlp.MLP.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – See parameter verbose of class
mnets.mlp.MLP.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

	
forward(x, weights=None, distilled_params=None, condition=None, seq_lengths=None)

	Compute the output [image: y] of this network given the input
[image: x].

Note

If constructor argument preprocess_fct was set, then all
inputs x are first processed by this function.

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – See argument weights of method
mnets.mlp.MLP.forward().

	distilled_params – Will only be passed to the underlying instance
of class mnets.mlp.MLP

	condition (int [https://docs.python.org/3/library/functions.html#int] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, then this argument
will be passed as argument ckpt_id to the method
utils.context_mod_layer.ContextModLayer.forward().

When providing as dict, see argument condition of method
mnets.mlp.MLP.forward() for more details.

	seq_lengths (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – List of sequence
lengths. The length of the list has to match the batch size of
inputs x. The entries will correspond to the unpadded
sequence lengths. If this option is provided, then the
bidirectional layers will reverse its input sequences according
to the unpadded sequence lengths.

Example

x = [[a,b,0,0], [a,b,c,0]].T. If
seq_lengths = [2, 3] if provided, then the reverse
sequences [[b,a,0,0], [c,b,a,0]].T are fed into the
first bidirectional layer (and similarly for all subsequent
bidirectional layers). Otherwise reverse sequences
[[0,0,b,a], [0,c,b,a]].T are used.

Caution

If this option is not provided but padded input sequences
are used, the output of a bidirectional layer will depent on
the padding. I.e., different padding lengths will lead to
different results.

	Returns:

	Where the tuple is containing:

	output (torch.Tensor): The output of the network.

	hidden (list): None - not implemented yet.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
get_cm_weights()

	Get internal maintained weights that are associated with context-
modulation.

	Returns:

	List of weights from
mnets.mnet_interface.MainNetInterface.internal_params that
are belonging to context-mod layers.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_non_cm_weights()

	Get internal weights that are not associated with context-modulation.

	Returns:

	List of weights from
mnets.mnet_interface.MainNetInterface.internal_params that
are not belonging to context-mod layers.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
init_hh_weights_orthogonal()

	Initialize hidden-to-hidden weights orthogonally.

This method will call method
mnets.simple_rnn.SimpleRNN.init_hh_weights_orthogonal() of all
internally maintained instances of class
mnets.simple_rnn.SimpleRNN.

	
property num_rec_layers

	See attribute mnets.simple_rnn.SimpleRNN.num_rec_layers.
Total number of recurrent layer, where each bidirectional layer consists
of at least two recurrent layers (forward and backward layer).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property preprocess_fct

	See constructor argument preprocess_fct.

	Setter:

	The setter may only be called before the first call of the
forward() method.

	Type:

	func

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property use_lstm

	See attribute mnets.simple_rnn.SimpleRNN.use_lstm.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

A bio-plausible convolutional network for CIFAR

The module mnets.bio_conv_net implements a simple biologically-plausible
network with convolutional and fully-connected layers. The bio-plausibility
arises through the usage of conv-layers without weight sharing, i.e., layers
from class utils.local_conv2d_layer.LocalConv2dLayer. The network
specification has been taken from the following paper

Bartunov et al., “Assessing the Scalability of Biologically-Motivated Deep
Learning Algorithms and Architectures”, NeurIPS 2018. [http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures]

in which this kind of network has been termed “locally-connected network”.

In particular, we consider the network architecture specified in table 3 on page
13 for the CIFAR dataset.

	hypnettorch.mnets.bio_conv_net.BioConvNet([...])

	Implementation of a locally-connected network for CIFAR.

	
class hypnettorch.mnets.bio_conv_net.BioConvNet(in_shape=(32, 32, 3), num_classes=10, no_weights=False, init_weights=None, use_context_mod=False, context_mod_inputs=False, no_last_layer_context_mod=False, context_mod_no_weights=False, context_mod_post_activation=False, context_mod_gain_offset=False, context_mod_gain_softplus=False, context_mod_apply_pixel_wise=False)

	Bases: Classifier

Implementation of a locally-connected network for CIFAR.

The network consists of 3 bio-plausible convolutional layers
(using class utils.local_conv2d_layer.LocalConv2dLayer)
followed by two fully-connected layers.

Assume conv layers are specified by the tuple (K x K, C, S, P), where
K denotes the kernel size, C the number of channels, S the
stride and P the padding. The network is defined as follows

	Bio-conv layer (5 x 5, 64, 2, 0)

	Bio-conv layer (5 x 5, 128, 2, 0)

	Bio-conv layer (3 x 3, 256, 1, 1)

	FC layer with 1024 outputs

	FC layer with 10 outputs

Note, the padding for the first two convolutional layers was not specified
in the paper, so we just assumed it to be zero.

The network output will be linear, so we do not apply the softmax
inside the forward() method.

Note, the paper states that tanh was used in all networks as
non-linearity. Therefore, we use this non-linearity too.

	Parameters:

	
	in_shape – The shape of an input sample.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	num_classes – The number of output neurons.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

Note, internal weights (see
mnets.mnet_interface.MainNetInterface.weights) will be
affected by this argument only.

	use_context_mod (bool [https://docs.python.org/3/library/functions.html#bool]) – Add context-dependent modulation layers
utils.context_mod_layer.ContextModLayer after the linear
computation of each layer.

	context_mod_inputs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether context-dependent modulation should
also be applied to network intpus directly. I.e., assume
[image: \mathbf{x}] is the input to the network. Then the first
network operation would be to modify the input via
[image: \mathbf{x} \cdot \mathbf{g} + \mathbf{s}] using context-
dependent gain and shift parameters.

Note

Argument applies only if use_context_mod is True.

	no_last_layer_context_mod (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, context-dependent
modulation will not be applied to the output layer.

Note

Argument applies only if use_context_mod is True.

	context_mod_no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – The weights of the context-mod layers
(utils.context_mod_layer.ContextModLayer) are treated
independently of the option no_weights.
This argument can be used to decide whether the context-mod
parameters (gains and shifts) are maintained internally or
externally.

Note

Check out argument weights of the forward() method
on how to correctly pass weights to the network that are
externally maintained.

	context_mod_post_activation (bool [https://docs.python.org/3/library/functions.html#bool]) – Apply context-mod layers after the
activation function (activation_fn) in hidden layer rather than
before, which is the default behavior.

Note

This option only applies if use_context_mod is True.

Note

This option does not affect argument context_mod_inputs.

Note

Note, there is no non-linearity applied to the output layer,
such that this argument has no effect there.

	context_mod_gain_offset (bool [https://docs.python.org/3/library/functions.html#bool]) – Activates option apply_gain_offset
of class utils.context_mod_layer.ContextModLayer for all
context-mod layers that will be instantiated.

	context_mod_gain_softplus (bool [https://docs.python.org/3/library/functions.html#bool]) – Activates option
apply_gain_softplus of class
utils.context_mod_layer.ContextModLayer for all
context-mod layers that will be instantiated.

	context_mod_apply_pixel_wise (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the context-dependent
modulation applies a scalar gain and shift to all feature maps in
the output of a convolutional layer. When activating this option,
the gain and shift will be a per-pixel parameter in all feature
maps.

To be more precise, consider the output of a convolutional layer
of shape [C,H,W]. If False, there will be C gain and
shift parameters for such a layer. Upon activating this option, the
number of gain and shift parameters for such a layer will increase
to C x H x W.

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(x, weights=None, distilled_params=None, condition=None, collect_activations=False)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	x – Input image.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If a list of parameter tensors is given and
context modulation is used (see argument use_context_mod in
constructor), then these parameters are interpreted as context-
modulation parameters if the length of weights equals
2*len(net.context_mod_layers). Otherwise, the length is
expected to be equal to the length of the attribute
mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible
keywords internal_weights and mod_weights. Each keyword
is expected to map onto a list of tensors.
The keyword internal_weights refers to all weights of this
network except for the weights of the context-modulation layers.
The keyword mod_weights, on the other hand, refers
specifically to the weights of the context-modulation layers.
It is not necessary to specify both keywords.

	condition (int [https://docs.python.org/3/library/functions.html#int], optional) – Will be passed as argument ckpt_id
to the method
utils.context_mod_layer.ContextModLayer.forward() for
all context-mod layers in this network.

	collect_activations (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If one wants to return the
activations in the network. This information can be used for
credit assignment later on, in case an alternative to PyTorch
its torch.autograd [https://pytorch.org/docs/master/torch.html#module-torch.autograd] should be used.

	Returns:

	Tuple containing:

	y: The output of the network.

	layer_activation (optional): The activations of the network.
Only returned if collect_activations was set to True. The
list will contain the activations of all convolutional and linear
layers.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor] or tuple)

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Interface for Classifiers

A general interface for main networks used in classification tasks. This
abstract base class also provides a collection of static helper functions that
are useful in classification problems.

	
class hypnettorch.mnets.classifier_interface.Classifier(num_classes, verbose)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], MainNetInterface

A general interface for classification networks.

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
static accuracy(y, t)

	Computing the accuracy between predictions y and targets t. We
assume that the argmax of t results in labels as described in the
docstring of method “cross_entropy_loss”.

	Parameters:

	
	y – Outputs from the main network.

	t – Targets in form of soft labels or 1-hot encodings.

	Returns:

	Relative prediction accuracy on the given batch.

	
static knowledge_distillation_loss(logits, target_logits, target_mapping=None, device=None, T=2.0)

	Compute the knowledge distillation loss as proposed by

Hinton et al., “Distilling the Knowledge in a Neural Network”,
NIPS Deep Learning and Representation Learning Workshop, 2015.
http://arxiv.org/abs/1503.02531

	Parameters:

	
	logits – Unscaled outputs from the main network, i.e., activations of
the last hidden layer (unscaled logits).

	target_logits – Target logits, i.e., activations of the last hidden
layer (unscaled logits) from the target model.
Note, we won’t detach “target_logits” from the graph. Make sure,
that you do this before calling this method.

	target_mapping – In continual learning, it might be that the output
layer size of a model is growing. Thus, it could be that the
model providing the target_logits has a smaller output size
than the current model providing the logits. Therefore, one
has to provide a mapping, which is a list of indices for
logits that state which activations in logits have a
corresponding target in target_logits.
For instance, if the output layer size just increased by 1
through appending a new output neuron to the current model, the
mapping would simply be:
target_mapping = list(range(target_logits.shape[1])).

	device – Current PyTorch device. Only needs to be specified if
“target_mapping” is given.

	T – Softmax temperature.

	Returns:

	Knowledge Distillation (KD) loss.

	
static logit_cross_entropy_loss(h, t, reduction='mean')

	Compute cross-entropy loss for given predictions and targets.
Note, we assume that the argmax of the target vectors results in the
correct label.

	Parameters:

	
	h – Unscaled outputs from the main network, i.e., activations of the
last hidden layer (unscaled logits).

	t – Targets in form os soft labels or 1-hot encodings.

	reduction (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reduction method to be passed to
torch.nn.functional.cross_entropy() [https://pytorch.org/docs/master/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy].

	Returns:

	Cross-entropy loss computed on logits h and labels extracted
from target vector t.

	
property num_classes

	Number of output neurons.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
static num_hyper_weights(dims)

	The number of weights that have to be predicted by a hypernetwork.

Deprecated since version 1.0: Please use method
mnets.mnet_interface.MainNetInterface.shapes_to_num_weights()
instead.

	Parameters:

	dims – For instance, the attribute hyper_shapes.

	Returns:

	(int)

	
static softmax_and_cross_entropy(h, t, reduction_sum=False)

	Compute the cross entropy from logits, allowing smoothed labels
(i.e., this function does not require 1-hot targets).

	Parameters:

	
	h – Unscaled outputs from the main network, i.e., activations of the
last hidden layer (unscaled logits).

	t – Targets in form os soft labels or 1-hot encodings.

	Returns:

	Cross-entropy loss computed on logits h and given targets t.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

LeNet

This module contains a general classifier template and a LeNet-like network
to classify either MNIST or CIFAR-10 images. The network is implemented in a
way that it might not have trainable parameters. Instead, the network weights
would have to be passed to the forward method. This makes the usage of a
hypernetwork (a network that generates the weights of another network)
particularly easy.

	
class hypnettorch.mnets.lenet.LeNet(in_shape=(28, 28, 1), num_classes=10, verbose=True, arch='mnist_large', no_weights=False, init_weights=None, dropout_rate=-1, **kwargs)

	Bases: Classifier

The network consists of two convolutional layers followed by two fully-
connected layers. See implementation for details.

LeNet was originally introduced in

“Gradient-based learning applied to document recognition”, LeCun et
al., 1998.

Though, the implementation provided here has several difference compared
to the original LeNet architecture (e.g., the LeNet-5 architecture):

	There is no special connectivity map before the second convolutional
layer as described by table 1 in the original paper.

	The dimensions of layers and their activation functions are dfferent.

	The original LeNet-5 has a third fully connected layer with 1x1 kernels.

We mainly use this modified LeNet architecture for MNIST:

	A small architecture with only 21,840 weights.

	A larger architecture with 431,080 weights.

Both of these architectures are typically used for MNIST nowadays.

Note, a variant of this architecture is also used for CIFAR-10, e.g. in

“Bayesian Convolutional Neural Networks with Bernoulli Approximate
Variational Inference”, Gal et al., 2015.

and

“Multiplicative Normalizing Flows for Variational Bayesian Neural
Networks”, Louizos et al., 2017.

In both these works, the dimensions of the weight parameters are:

main_dims=[[192,3,5,5],[192],[192,192,5,5],[192],[1000,4800],
 [1000],[10,1000],[10]],

which is an architecture with 5,747,394 weights. Note, the authors used
dropout in different configurations, e.g., after each layer, only after
the fully-connected layer or no dropout at all.

	Parameters:

	
	in_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The shape of an input sample.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – The number of output neurons.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow printing of general information about the
generated network (such as number of weights).

	arch (str [https://docs.python.org/3/library/stdtypes.html#str]) – The architecture to be employed. The following options are
available:

	'mnist_small': A small LeNet with 21,840 weights suitable
for MNIST

	'mnist_large': A larger LeNet with 431,080 weights suitable
for MNIST

	'cifar': A huge LeNet with 5,747,394 weights designed for
CIFAR-10.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

	dropout_rate (float [https://docs.python.org/3/library/functions.html#float]) – If -1, no dropout will be applied. Otherwise a
number between 0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the convolutional layers
(before pooling) and after the first fully-connected layer
(after the activation function).

	**kwargs – Keyword arguments regarding context modulation. This class
can process the same context-modulation related arguments as class
mnets.mlp.MLP. One may additionally specify the argument
context_mod_apply_pixel_wise (see class
mnets.resnet.ResNet).

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – See argument weights of method
mnets.mlp.MLP.forward().

	condition (int [https://docs.python.org/3/library/functions.html#int], optional) – If provided, then this argument will be
passed as argument ckpt_id to the method
utils.context_mod_layer.ContextModLayer.forward().

	Returns:

	The output of the network.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Multi-Layer Perceptron

Implementation of a fully-connected neural network.

An example usage is as a main model, that doesn’t include any trainable weights.
Instead, weights are received as additional inputs. For instance, using an
auxilliary network, a so called hypernetwork, see

Ha et al., “HyperNetworks”, arXiv, 2016,
https://arxiv.org/abs/1609.09106

	
class hypnettorch.mnets.mlp.MLP(n_in=1, n_out=1, hidden_layers=(10, 10), activation_fn=ReLU(), use_bias=True, no_weights=False, init_weights=None, dropout_rate=-1, use_spectral_norm=False, use_batch_norm=False, bn_track_stats=True, distill_bn_stats=False, use_context_mod=False, context_mod_inputs=False, no_last_layer_context_mod=False, context_mod_no_weights=False, context_mod_post_activation=False, context_mod_gain_offset=False, context_mod_gain_softplus=False, out_fn=None, verbose=True)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], MainNetInterface

Implementation of a Multi-Layer Perceptron (MLP).

This is a simple fully-connected network, that receives input vector
[image: \mathbf{x}] and outputs a vector [image: \mathbf{y}] of real values.

The output mapping does not include a non-linearity by default, as we wanna
map to the whole real line (but see argument out_fn).

	Parameters:

	
	n_in (int [https://docs.python.org/3/library/functions.html#int]) – Number of inputs.

	n_out (int [https://docs.python.org/3/library/functions.html#int]) – Number of outputs.

	hidden_layers (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of integers, each number denoting
the size of a hidden layer.

	activation_fn – The nonlinearity used in hidden layers. If None, no
nonlinearity will be applied.

	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether layers may have bias terms.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

Note, internal weights (see
mnets.mnet_interface.MainNetInterface.weights) will be
affected by this argument only.

	dropout_rate – If -1, no dropout will be applied. Otherwise a number
between 0 and 1 is expected, denoting the dropout rate of hidden
layers.

	use_spectral_norm – Use spectral normalization for training.

	use_batch_norm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether batch normalization should be used. Will
be applied before the activation function in all hidden layers.

	bn_track_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – If batch normalization is used, then this option
determines whether running statistics are tracked in these
layers or not (see argument track_running_stats of class
utils.batchnorm_layer.BatchNormLayer).

If False, then batch statistics are utilized even during
evaluation. If True, then running stats are tracked. When
using this network in a continual learning scenario with
different tasks then the running statistics are expected to be
maintained externally. The argument stats_id of the method
utils.batchnorm_layer.BatchNormLayer.forward() can be
provided using the argument condition of method forward().

Example

To maintain the running stats, one can simply iterate over
all batch norm layers and checkpoint the current running
stats (e.g., after learning a task when applying a Continual
learning scenario).

for bn_layer in net.batchnorm_layers:
 bn_layer.checkpoint_stats()

	distill_bn_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the shapes of the batchnorm
statistics will be added to the attribute
mnets.mnet_interface.MainNetInterface.hyper_shapes_distilled and the current statistics will be returned by the
method distillation_targets().

Note, this attribute may only be True if bn_track_stats
is True.

	use_context_mod (bool [https://docs.python.org/3/library/functions.html#bool]) – Add context-dependent modulation layers
utils.context_mod_layer.ContextModLayer after the linear
computation of each layer.

	context_mod_inputs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether context-dependent modulation should
also be applied to network intpus directly. I.e., assume
[image: \mathbf{x}] is the input to the network. Then the first
network operation would be to modify the input via
[image: \mathbf{x} \cdot \mathbf{g} + \mathbf{s}] using context-
dependent gain and shift parameters.

Note

Argument applies only if use_context_mod is True.

	no_last_layer_context_mod (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, context-dependent
modulation will not be applied to the output layer.

Note

Argument applies only if use_context_mod is True.

	context_mod_no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – The weights of the context-mod layers
(utils.context_mod_layer.ContextModLayer) are treated
independently of the option no_weights.
This argument can be used to decide whether the context-mod
parameters (gains and shifts) are maintained internally or
externally.

Note

Check out argument weights of the forward() method
on how to correctly pass weights to the network that are
externally maintained.

	context_mod_post_activation (bool [https://docs.python.org/3/library/functions.html#bool]) – Apply context-mod layers after the
activation function (activation_fn) in hidden layer rather than
before, which is the default behavior.

Note

This option only applies if use_context_mod is True.

Note

This option does not affect argument context_mod_inputs.

Note

This option does not affect argument
no_last_layer_context_mod. Hence, if a output-nonlinearity
is applied through argument out_fn, then context-modulation
would be applied before this non-linearity.

	context_mod_gain_offset (bool [https://docs.python.org/3/library/functions.html#bool]) – Activates option apply_gain_offset
of class utils.context_mod_layer.ContextModLayer for all
context-mod layers that will be instantiated.

	context_mod_gain_softplus (bool [https://docs.python.org/3/library/functions.html#bool]) – Activates option
apply_gain_softplus of class
utils.context_mod_layer.ContextModLayer for all
context-mod layers that will be instantiated.

	out_fn (optional) – If provided, this function will be applied to the
output neurons of the network.

Warning

This changes the interpretation of the output of the
forward() method.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to print information (e.g., the number of
weights) during the construction of the network.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This method will return the current batch statistics of all batch
normalization layers if distill_bn_stats and use_batch_norm
was set to True in the constructor.

	Returns:

	The target tensors corresponding to the shapes specified in
attribute hyper_shapes_distilled.

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If a list of parameter tensors is given and
context modulation is used (see argument use_context_mod in
constructor), then these parameters are interpreted as context-
modulation parameters if the length of weights equals
2*len(net.context_mod_layers). Otherwise, the length is
expected to be equal to the length of the attribute
mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible
keywords internal_weights and mod_weights. Each keyword
is expected to map onto a list of tensors.
The keyword internal_weights refers to all weights of this
network except for the weights of the context-modulation layers.
The keyword mod_weights, on the other hand, refers
specifically to the weights of the context-modulation layers.
It is not necessary to specify both keywords.

	distilled_params – Will be passed as running_mean and
running_var arguments of method
utils.batchnorm_layer.BatchNormLayer.forward() if
batch normalization is used.

	condition (int [https://docs.python.org/3/library/functions.html#int] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If int is provided, then this
argument will be passed as argument stats_id to the method
utils.batchnorm_layer.BatchNormLayer.forward() if
batch normalization is used.

If a dict is provided instead, the following keywords are
allowed:

	bn_stats_id: Will be handled as stats_id of the
batchnorm layers as described above.

	cmod_ckpt_id: Will be passed as argument ckpt_id
to the method
utils.context_mod_layer.ContextModLayer.forward().

	Returns:

	Tuple containing:

	y: The output of the network.

	h_y (optional): If out_fn was specified in the
constructor, then this value will be returned. It is the last
hidden activation (before the out_fn has been applied).

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
static weight_shapes(n_in=1, n_out=1, hidden_layers=[10, 10], use_bias=True)

	Compute the tensor shapes of all parameters in a fully-connected
network.

	Parameters:

	
	n_in – Number of inputs.

	n_out – Number of output units.

	hidden_layers – A list of ints, each number denoting the size of a
hidden layer.

	use_bias – Whether the FC layers should have biases.

	Returns:

	A list of list of integers, denoting the shapes of the individual
parameter tensors.

Main-Network Interface

The module mnets.mnet_interface contains an interface for main networks.
The interface ensures that we can consistently use these networks without
knowing their specific implementation.

	
class hypnettorch.mnets.mnet_interface.MainNetInterface

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A general interface for main networks, that can be used stand-alone
(i.e., having their own weights) or with no (or only some) internal
weights, such that the remaining weights have to be passed through the
forward function (e.g., they may be generated through a hypernetwork).

	
property batchnorm_layers

	A list of instances of class
utils.batchnorm_layer.BatchNormLayer in case batch
normalization is used in this network.

Note

We explicitly do not support the usage of PyTorch its batchnorm
layers as class utils.batchnorm_layer.BatchNormLayer
represents a hypernet compatible wrapper for them.

	Type:

	torch.nn.ModuleList [https://pytorch.org/docs/master/generated/torch.nn.ModuleList.html#torch.nn.ModuleList]

	
property context_mod_layers

	A list of instances of class
utils.context_mod_layer.ContextModLayer in case these are
used in this network.

	Type:

	torch.nn.ModuleList [https://pytorch.org/docs/master/generated/torch.nn.ModuleList.html#torch.nn.ModuleList]

	
custom_init(normal_init=False, normal_std=0.02, zero_bias=True)

	Initialize weight tensors in attribute layer_weight_tensors
using Xavier initialization and set bias vectors to 0.

Note

This method will override the default initialization of the network,
which is often based on torch.nn.init.kaiming_uniform_() [https://pytorch.org/docs/master/nn.init.html#torch.nn.init.kaiming_uniform_]
for weight tensors (i.e., attribute layer_weight_tensors)
and a uniform init based on fan-in/fan-out for bias vectors
(i.e., attribute layer_bias_vectors).

	Parameters:

	
	normal_init (bool [https://docs.python.org/3/library/functions.html#bool]) – Use normal initialization rather than Xavier.

	normal_std (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation when choosing
normal_init.

	zero_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether bias vectors should be initialized to
zero. If False, then bias vectors are left untouched.

	
abstract distillation_targets()

	Targets to be distilled after training.

If hyper_shapes_distilled is not None, then this method
can be used to retrieve the targets that should be distilled into an
external hypernetwork after training.

The shapes of the returned tensors have to match the shapes specified in
hyper_shapes_distilled.

Example

Assume a continual learning scenario with a main network that uses
batch normalization (and tracks running statistics). Then this
method should be called right after training on a task in order to
retrieve the running statistics, such that they can be distilled
into a hypernetwork.

	Returns:

	The target tensors corresponding to the shapes specified in
attribute hyper_shapes_distilled.

	
static flatten_params(params, param_shapes=None, unflatten=False)

	Flatten a list of parameter tensors.

This function will take a list of parameter tensors and flatten them
into a single vector. This flattening operation can also be undone using
the argument unflatten.

	Parameters:

	
	params (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tensors. Those tensors will be flattened
and concatenated into a tensor. If unflatten=True, then
params is expected to be a flattened tensor, which will be
split into a list of tensors according to param_shapes.

	param_shapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of parameter tensor shapes. Required when
unflattening a flattened parameter tensor.

	unflatten (bool [https://docs.python.org/3/library/functions.html#bool]) – If True. the flattening operation will be
reversed.

	Returns:

	The flattened tensor. If unflatten=True, a list
of tensors will be returned.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
abstract forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	x – The inputs [image: x] to the network.

	weights (optional) – List of weight tensors, that are used as network
parameters. If attribute hyper_shapes_learned is not
None, then this argument is non-optional and the shapes
of the weight tensors have to be as specified by
hyper_shapes_learned.

Otherwise, this option might still be set but the weight tensors
must follow the shapes specified by attribute
param_shapes.

	distilled_params (optional) – May only be passed if attribute
hyper_shapes_distilled is not None.

If not passed but the network relies on those parameters
(e.g., batchnorm running statistics), then this method simply
chooses the current internal representation of these parameters
as returned by distillation_targets().

	condition (optional) – Sometimes, the network will have to be
conditioned on contextual information, which can be passed via
this argument and depends on the actual implementation of this
interface.

For instance, when using batch normalization in a continual
learning scenario, where running statistics have been
checkpointed for every task, then this condition might be
the actual task ID, that is passed as the argument stats_id
of the method
utils.batchnorm_layer.BatchNormLayer.forward().

	Returns:

	The output [image: y] of the network.

	
get_output_weight_mask(out_inds=None, device=None)

	Create a mask for selecting weights connected solely to certain
output units.

This method will return a list of the same length as
param_shapes. Entries in this list are either None or
masks for the corresponding parameter tensors. For all parameter
tensors that are not directly connected to output units, the
corresponding entry will be None. If out_inds is None, then all
output weights are selected by a masking value 1. Otherwise, only
the weights connected to the output units in out_inds are selected,
the rest is masked out.

Note

This method only works for networks with a fully-connected output
layer (see has_fc_out), that have the attribute
mask_fc_out set. Otherwise, the method has to be overwritten
by an implementing class.

	Parameters:

	
	out_inds (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of integers. Each entry denotes an
output unit.

	device – Pytorch device. If given, the created masks will be moved
onto this device.

	Returns:

	List of masks with the same length as param_shapes.
Entries whose corresponding parameter tensors are not connected to
the network outputs are None.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
property has_bias

	Whether layers in this network have bias terms.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property has_fc_out

	Whether the output layer of the network is a fully-connected layer.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property has_linear_out

	Is True if no nonlinearity is applied in the output layer.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property hyper_shapes_distilled

	A list of lists of integers. This attribute is complementary to
attribute hyper_shapes_learned, which contains shapes of tensors
that are learned through the hypernetwork. In contrast, this attribute
should contain the shapes of tensors that are not needed by the main
network during training (as it learns or calculates the tensors
itself), but should be distilled into a hypernetwork after training
in order to avoid increasing memory consumption.

The attribute is None if no tensors have to be distilled into
a hypernetwork.

For instance, if batch normalization is used, then the attribute
hyper_shapes_learned might contain the batch norm weights
whereas the attribute hyper_shapes_distilled contains the
running statistics, which are first estimated by the main network
during training and later distilled into the hypernetwork.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

	
property hyper_shapes_learned

	A list of lists of integers. Each list represents the shape of a
weight tensor that has to be passed to the forward() method during
training. If all weights are maintained internally, then this attribute
will be None.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property hyper_shapes_learned_ref

	A list of integers. Each entry either represents an index within
attribute param_shapes or is set to -1.

Note

The possibility that entries may be -1 should account for
unforeseeable flexibility that programmers may need.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property internal_params

	A list of all internally maintained parameters of the main network
currently in use. If all parameters are assumed to be generated
externally, then this attribute will be None.

Simply speaking, the parameters listed here should be passed to
the optimizer.

Note

In most cases, the attribute will contain the same set of parameter
objects as the method torch.nn.Module.parameters() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.parameters] would
return. Though, there might be future use-cases where the
programmer wants to hide parameters from the optimizer in a task-
or time-dependent manner.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList] or None

	
property internal_params_ref

	A list of integers. Each entry either represents an index within
attribute param_shapes or is set to -1.

Can only be spacified if internal_params is not None.

Note

The possibility that entries may be -1 should account for
unforeseeable flexibility that programmers may need.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

	
property layer_bias_vectors

	Similar to attribute layer_weight_tensors but for the bias
vectors in each layer. List should be empty in case has_bias is
False.

Note

There might be cases where some weight matrices in attribute
layer_weight_tensors have no bias vectors, in which
case elements of this list might be None.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList]

	
property layer_weight_tensors

	These are the actual weight tensors used in layers (e.g., weight
matrix in fully-connected layer, kernels in convolutional layer, …).

This attribute is useful when applying a custom initialization to
these layers.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList]

	
property mask_fc_out

	If this attribute is set to True, it is implicitly assumed that
if hyper_shapes_learned is not None, the last two entries of
hyper_shapes_learned are the weights and biases of the final
fully-connected layer.

This attribute is helpful, for instance, in multi-head continual
learning settings. In case we regularize task-specific main network
weights, it is important to know which weights are specific for an
output head (as determined by the weights of the final layer).

Note

Only applies if attribute has_fc_out is True.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property num_internal_params

	The number of internally maintained parameters as prescribed by
attribute internal_params.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property num_params

	The total number of weights in the parameter tensors described by the
attribute param_shapes.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
overwrite_internal_params(new_params)

	Overwrite the values of all internal parameters.

This will affect all parameters maintained in attribute
internal_params.

An example usage of this method is the initialization of a standalone
main network with weights that have been previously produced by a
hypernetwork.

	Parameters:

	new_params – A list of parameter values that are used to initialize
the network internal parameters is expected.

	
property param_shapes

	A list of lists of integers. Each list represents the shape of a
parameter tensor. Note, this attribute is independent of the attribute
internal_params, it always comprises the shapes of all parameter
tensors as if the network would be stand-alone (i.e., no weights being
passed to the forward() method).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property param_shapes_meta

	A list of dictionaries. The length of the list is equal to the length
of the list param_shapes and each entry of this list provides
meta information to the corresponding entry in param_shapes.
Each dictionary contains the keys name, index and layer.
The key name is a string and refers to the type of weight tensor
that the shape corresponds to.

Possible values are:

	'weight': A weight tensor of a standard layer as those
stored in attribute layer_weight_tensors.

	'bias': A bias vector of a standard layer as those
stored in attribute layer_bias_vectors.

	'bn_scale': The weights for scaling activations in a
batchnorm layer utils.batchnorm_layer.BatchNormLayer.

	'bn_shift': The weights for shifting activations in a
batchnorm layer utils.batchnorm_layer.BatchNormLayer.

	'cm_scale': The weights for scaling activations in a
context-mod layer
utils.context_mod_layer.ContextModLayer.

	'cm_shift': The weights for shifting activations in a
context-mod layer
utils.context_mod_layer.ContextModLayer.

	'embedding': The parameters represent embeddings.

	None: Not specified!

The key index might refer to the index of the corresponding
parameter tensor (if existing) inside the internal_params
list. It is -1 if the parameter tensor is not internally
maintained.

The key layer is an integer. Shapes with the same layer
entry are supposed to reside in the same layer. For instance, a
'weight' and a 'bias' with the same entry for key layer
are supposed to be the weight tensor and bias vector in the same
layer. The value -1 refers to not specified!

	type:

	list

	
static shapes_to_num_weights(dims)

	The number of parameters contained in a list of tensors with the
given shapes.

	Parameters:

	dims – List of tensor shapes. For instance, the attribute
hyper_shapes_learned.

	Returns:

	(int)

	
property weights

	Same as internal_params.

Deprecated since version 1.0: Please use attribute internal_params instead.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList] or None

ResNet

This module implements the class of Resnet networks described in section 4.2 of
the following paper:

“Deep Residual Learning for Image Recognition”, He et al., 2015
https://arxiv.org/abs/1512.03385

	
class hypnettorch.mnets.resnet.ResNet(in_shape=(32, 32, 3), num_classes=10, use_bias=True, num_feature_maps=(16, 16, 32, 64), verbose=True, n=5, k=1, no_weights=False, init_weights=None, use_batch_norm=True, bn_track_stats=True, distill_bn_stats=False, context_mod_apply_pixel_wise=False, **kwargs)

	Bases: Classifier

A resnet with [image: 6n+2] layers with [image: 3n] residual blocks,
consisting of two layers each.

	Parameters:

	
	in_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The shape of an input sample in format
HWC.

	Note
	We assume the Tensorflow format, where the last entry
denotes the number of channels.

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – The number of output neurons.

Note

The network outputs logits.

	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether layers may have bias terms.

Note

Bias terms are unnecessary in convolutional layers if batch
normalization is used. However, this option disables bias terms
altogether (including in the final fully-connected layer).

	num_feature_maps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of 4 integers, each denoting the number
of feature maps of convolutional layers in a certain group of the
network architecture. The first entry is the number of feature
maps of the first convolutional layer, the remaining 3 numbers
determine the number of feature maps in the consecutive groups
comprising [image: 2n] convolutional layers each.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow printing of general information about the
generated network (such as number of weights).

	n (int [https://docs.python.org/3/library/functions.html#int]) – The network will consist of [image: 6n+2] layers. In the
paper [image: n] has been chosen to be 3, 5, 7, 9 or 18.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The widening factor. Feature maps in the 3 convolutional groups
will be multiplied by this number. See argument
num_feature_maps. This argument is typical for wide resnets,
such as mnets.wide_resnet.WRN. Hence, for k > 1 this
network becomes essentially a wide resnet.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

Note, this also affects the affine parameters of the
batchnorm layer. I.e., if set to True, then the argument
affine of utils.batchnorm_layer.BatchNormLayer
will be set to False and we expect the batchnorm parameters
to be passed to the forward().

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

	use_batch_norm – Whether batch normalization should used. It will be
applied after all convolutional layers (before the activation).

	bn_track_stats – If batch normalization is used, then this option
determines whether running statistics are tracked in these
layers or not (see argument track_running_stats of class
utils.batchnorm_layer.BatchNormLayer).

If False, then batch statistics are utilized even during
evaluation. If True, then running stats are tracked. When
using this network in a continual learning scenario with
different tasks then the running statistics are expected to be
maintained externally. The argument stats_id of the method
utils.batchnorm_layer.BatchNormLayer.forward() can be
provided using the argument condition of method
forward().

Example

To maintain the running stats, one can simply iterate over
all batch norm layers and checkpoint the current running
stats (e.g., after learning a task when applying a Continual
Learning scenario).

for bn_layer in net.batchnorm_layers:
 bn_layer.checkpoint_stats()

	distill_bn_stats – If True, then the shapes of the batchnorm
statistics will be added to the attribute
mnets.mnet_interface.MainNetInterface.hyper_shapes_distilled and the current statistics will be returned by the
method distillation_targets().

Note, this attribute may only be True if bn_track_stats
is True.

	context_mod_apply_pixel_wise (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, the context-dependent
modulation applies a scalar gain and shift to all feature maps in
the output of a convolutional layer. When activating this option,
the gain and shift will be a per-pixel parameter in all feature
maps.

To be more precise, consider the output of a convolutional layer
of shape [C,H,W]. By default, there will be C gain and shift
parameters for such a layer. Upon activating this option, the
number of gain and shift parameters for such a layer will increase
to C x H x W.

	**kwargs – Keyword arguments regarding context modulation. This class
can process the same context-modulation related arguments as class
mnets.mlp.MLP. Additionally, one may specify the argument
context_mod_apply_pixel_wise.

Some additional remarks regarding the handling of keyword arguments:

	use_context_mod: Context-modulation will be applied after the
linear computation of each layer (i.e. all hidden layers (conv
layers) as well as the final FC output layer).

Similar to Spatial Batch-Normalization, there will be a scalar
shift and gain applied per feature map for all convolutional
layers (except if context_mod_apply_pixel_wise is set).

	context_mod_inputs: The input is treated like the output of a
convolutional layer when applying context-dependent modulation.

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This method will return the current batch statistics of all batch
normalization layers if distill_bn_stats and use_batch_norm
were set to True in the constructor.

	Returns:

	The target tensors corresponding to the shapes specified in
attribute hyper_shapes_distilled.

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	x (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Batch of flattened input images.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If a list of parameter tensors is given and
context modulation is used (see argument use_context_mod in
constructor), then these parameters are interpreted as context-
modulation parameters if the length of weights equals
2*len(net.context_mod_layers). Otherwise, the length is
expected to be equal to the length of the attribute
mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible
keywords internal_weights and mod_weights. Each keyword
is expected to map onto a list of tensors.
The keyword internal_weights refers to all weights of this
network except for the weights of the context-modulation layers.
The keyword mod_weights, on the other hand, refers
specifically to the weights of the context-modulation layers.
It is not necessary to specify both keywords.

	distilled_params – Will be passed as running_mean and
running_var arguments of method
utils.batchnorm_layer.BatchNormLayer.forward() if
batch normalization is used.

	condition (optional, int [https://docs.python.org/3/library/functions.html#int] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If int is provided, then this
argument will be passed as argument stats_id to the method
utils.batchnorm_layer.BatchNormLayer.forward() if
batch normalization is used.

If a dict is provided instead, the following keywords are
allowed:

	bn_stats_id: Will be handled as stats_id of the
batchnorm layers as described above.

	cmod_ckpt_id: Will be passed as argument ckpt_id
to the method
utils.context_mod_layer.ContextModLayer.forward().

	Returns:

	The output of the network.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

ResNet for ImageNet

This module implements the class of Resnet networks described Table 1 of the
following paper:

“Deep Residual Learning for Image Recognition”, He et al., 2015
https://arxiv.org/abs/1512.03385

Those networks are designed for inputs of size 224 x 224. In contrast, the
Resnet family implemented by class mnets.resnet.ResNet is primarily
designed for CIFAR like inputs of size 32 x 32.

	
class hypnettorch.mnets.resnet_imgnet.ResNetIN(in_shape=(224, 224, 3), num_classes=1000, use_bias=True, use_fc_bias=None, num_feature_maps=(64, 64, 128, 256, 512), blocks_per_group=(2, 2, 2, 2), projection_shortcut=False, bottleneck_blocks=False, cutout_mod=False, no_weights=False, use_batch_norm=True, bn_track_stats=True, distill_bn_stats=False, chw_input_format=False, verbose=True, **kwargs)

	Bases: Classifier

Hypernet-compatible Resnets for ImageNet.

The architecture of those Resnets is summarized in Table 4 of
He et al. [https://arxiv.org/abs/1512.03385]. They consist of 5 groups
of convolutional layers, where the first group only has 1 convolutional
layer followed by a max-pooling operation. The other 4 groups consist of
blocks (see blocks_per_group) of either 2 or 3 (see
bottleneck_blocks) convolutional layers per block. The network then
computes its output via a final average pooling operation and a fully-
connected layer.

The number of layer per network is therewith
1 + sum(blocks_per_group) * 2 + 1, i.e., initial conv layer, num. conv
layers in all blocks (assuming bottleneck_blocks=False) and the final
fully-connected layer. If projection_shortcut=True, additional 1x1
conv layers are added for shortcuts where the feature maps tensor shape
changes.

	Here are a few implementation details worth noting:
	
	If use_batch_norm=True, it would be redundant to add convolutional
layers to the conv layers, therefore one should set
use_bias=False, use_fc_bias=True. Skip connections never use biases.

	Online implementations vary in their use of projection or identity
shortcuts. We offer both possibilities (projection_shortcut). If
projection_shortcut is used, then a batchnorm layer is added after
each projection.

Here are parameter configurations that can be used to obtain well-known
Resnets (all configurations should use
use_bias=False, use_fc_bias=True):

	Resnet-18: blocks_per_group=(2,2,2,2), bottleneck_blocks=False

	Resnet-34: blocks_per_group=(3,4,6,3), bottleneck_blocks=False

	Resnet-50: blocks_per_group=(3,4,6,3), bottleneck_blocks=True

	Resnet-101: blocks_per_group=(3,4,23,3), bottleneck_blocks=True

	Resnet-152: blocks_per_group=(3,4,36,3), bottleneck_blocks=True

	Parameters:

	
	(....) – See arguments of class:mnets.wrn.WRN.

	num_feature_maps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of 5 integers, each denoting the
number of feature maps in a group of convolutional layers.

Note

If bottleneck_blocks=True, then the last 1x1 conv layer in
each block has 4 times as many feature maps as specified by this
argument.

	blocks_per_group (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of 4 integers, each denoting the
number of convolutional blocks for the groups of convolutional
layers.

	projection_shortcut (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, skip connections that otherwise
would require zero-padding or subsampling will be realized via 1x1
conv layers followed by batchnorm. All other skip connections will
be realized via identity mappings.

	bottleneck_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether normal blocks or bottleneck blocks
should be used (cf. Fig. 5 in
He et al. [https://arxiv.org/abs/1512.03385])

	cutout_mod (bool [https://docs.python.org/3/library/functions.html#bool]) – Sometimes, networks from this family are used for
smaller (CIFAR-like) images. In this case, one has to either
upscale the images or adapt the architecture slightly (otherwise,
small images are too agressively downscaled at the very beginning).

When activating this option, the first conv layer is modified as
described here [https://github.com/uoguelph-mlrg/Cutout/blob/287f934ea5fa00d4345c2cccecf3552e2b1c33e3/model/resnet.py#L66], i.e., it uses
a kernel size of 3 with stride 1 and the max-pooling layer
is omitted.

Note, in order to recover the same architecture as in the link
above one has to additionally set:
use_bias=False, use_fc_bias=True, projection_shortcut=True.

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This method will return the current batch statistics of all batch
normalization layers if distill_bn_stats and use_batch_norm
were set to True in the constructor.

	Returns:

	The target tensors corresponding to the shapes specified in
attribute hyper_shapes_distilled.

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.resnet.ResNet.forward(). We provide some more
specific information below.

	x (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Based on the constructor argument
chw_input_format, either a flattened image batch with
encoding HWC or an unflattened image batch with encoding
CHW is expected.

	Returns:

	The output of the network.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_output_weight_mask(out_inds=None, device=None)

	Create a mask for selecting weights connected solely to certain
output units.

See docstring of overwritten super method
mnets.mnet_interface.MainNetInterface.get_output_weight_mask().

	
property has_bias

	Getter for read-only attribute has_bias.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

SimpleRNN

Implementation of a simple recurrent neural network that has stacked vanilla RNN
or LSTM layers that are optionally enclosed by fully-connected layers.

An example usage is as a main model, where the main weights are initialized
and protected by a method such as EWC, and the context-modulation patterns of
the neurons are produced by an external hypernetwork.

	
class hypnettorch.mnets.simple_rnn.SimpleRNN(n_in=1, rnn_layers=(10,), fc_layers_pre=(), fc_layers=(1,), activation=Tanh(), use_lstm=False, use_bias=True, no_weights=False, init_weights=None, kaiming_rnn_init=False, context_mod_last_step=False, context_mod_num_ts=-1, context_mod_separate_layers_per_ts=False, verbose=True, **kwargs)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], MainNetInterface

Implementation of a simple RNN.

This is a simple recurrent network, that receives input vector
[image: \mathbf{x}] and outputs a vector [image: \mathbf{y}] of real values.

Note

The output is non-linear if the last layer is recurrent! Otherwise,
logits are returned (cmp. attribute
mnets.mnet_interface.MainNetInterface.has_fc_out).

	Parameters:

	
	n_in (int [https://docs.python.org/3/library/functions.html#int]) – Number of inputs.

	rnn_layers (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – List of integers. Each entry denotes the
size of a recurrent layer. Recurrent layers will simply be stacked
as layers of this network.

If fc_layers_pre is empty, then the recurrent layers are the
initial layers.
If fc_layers is empty, then the last entry of this list will
denote the output size.

Note

This list may never be empty.

	fc_layers_pre (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – List of integers. Before the recurrent
layers a set of fully-connected layers may be added. This might be
specially useful when constructing recurrent autoencoders. The
entries of this list will denote the sizes of those layers.

If fc_layers_pre is not empty, its first entry will denote the
input size of this network.

	fc_layers (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – List of integers. After the recurrent layers,
a set of fully-connected layers is added. The entries of this list
will denote the sizes of those layers.

If fc_layers is not empty, its last entry will denote the output
size of this network.

	activation – The nonlinearity used in hidden layers.

	use_lstm (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True`, the recurrent layers will be LSTM
layers.

	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether layers may have bias terms.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

	init_weights (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

Note, internal weights (see
mnets.mnet_interface.MainNetInterface.weights) will be
affected by this argument only.

	kaiming_rnn_init (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, PyTorch initializes its recurrent
layers uniformly with an interval defined by the square-root of the
inverse of the layer size.

If this option is enabled, then the recurrent layers will be
initialized using the kaiming init as implemented by the function
utils.torch_utils.init_params().

	context_mod_last_step (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether context modulation is applied
at the last time step os a recurrent layer only. If False,
context modulation is applied at every time step.

Note

This option only applies if use_context_mod is True.

	context_mod_num_ts (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of timesteps.
If specified, context-modulation with a different set of weights is
applied at every timestep. If context_mod_separate_layers_per_ts
is True, then a separate context-mod layer per timestep will be
created. Otherwise, a single context-mod layer is created, but the
expected parameter shapes for this layer are
[context_mod_num_ts, *context_mod_shape].

Note

This option only applies if use_context_mod is True.

	context_mod_separate_layers_per_ts (bool [https://docs.python.org/3/library/functions.html#bool]) – If specified, a separate
context-mod layer per timestep is created (required if
context_mod_no_weights is False).

Note

Only applies if context_mod_num_ts is specified.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to print information (e.g., the number of
weights) during the construction of the network.

	**kwargs – Keyword arguments regarding context modulation. This class
can process the same context-modulation related arguments as class
mnets.mlp.MLP (plus the additional ones noted above).

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
basic_rnn_step(d, t, x_t, h_t, int_weights, cm_weights, ckpt_id, is_last_step)

	Perform vanilla rnn pass from inputs to hidden units.

Apply context modulation if necessary (i.e. if cm_weights is
not None).

This function implements a step of an
Elman RNN [https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_Jordan_networks].

Note

We made the following design choice regarding context-modulation.
In contrast to the LSTM, the Elman network layer consists of “two
steps”, updating the hidden state and computing an output based
on this hidden state. To be fair, context-mod should influence both
these “layers”. Therefore, we apply context-mod twice, but using the
same weights. This of course assumes that the hidden state and
output vector have the same dimensionality.

	Parameters:

	
	d (int [https://docs.python.org/3/library/functions.html#int]) – Index of the layer.

	t (int [https://docs.python.org/3/library/functions.html#int]) – Current timestep.

	x_t – Tensor of size [batch_size, n_hidden_prev] with inputs.

	h_t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of length 2, containing two tensors of size
[batch_size, n_hidden] with previous hidden states h and
and previous outputs y.

Note

The previous outputs y are ignored by this method, since
they are not required in an Elman RNN step.

	int_weights – See docstring of method compute_hidden_states().

	cm_weights (list [https://docs.python.org/3/library/stdtypes.html#list]) – The weights of the context-mod layer, if context-
mod should be applied.

	ckpt_id – See docstring of method compute_hidden_states().

	is_last_step (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the current time step is the last one.

	Returns:

	Tuple containing:

	h_t (torch.Tensor): The tensor h_t of size
[batch_size, n_hidden] with the new hidden state.

	y_t (torch.Tensor): The tensor y_t of size
[batch_size, n_hidden] with the new cell state.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property bptt_depth

	The truncation depth for backprop through time.

If -1, backprop through time (BPTT) will unroll all timesteps
present in the input. Otherwise, the forward pass will detach the
RNN hidden states smaller or equal than num_timesteps - bptt_depth
timesteps, resulting in truncated BPTT (T-BPTT).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
compute_basic_rnn_output(h_t, int_weights, use_cm, cm_weights, cm_idx, ckpt_id, is_last_step)

	Compute the output of a vanilla RNN given the hidden state.

	Parameters:

	
	(...) – See docstring of method basic_rnn_step().

	use_cm (boolean) – Whether context modulation is being used.

	cm_idx (int [https://docs.python.org/3/library/functions.html#int]) – Index of the context-mod layer.

	Returns:

	The output.

	Return type:

	(torch.tensor)

	
compute_fc_outputs(h, fc_w_weights, fc_b_weights, num_fc_cm_layers, cm_fc_layer_weights, cm_offset, cmod_cond, is_post_fc, ret_hidden)

	Compute the forward pass through the fully-connected layers.

This method also appends activations to ret_hidden.

	Parameters:

	
	h (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The input from the previous layer.

	fc_w_weights (list [https://docs.python.org/3/library/stdtypes.html#list]) – The weights for the fc layers.

	fc_b_weights (list [https://docs.python.org/3/library/stdtypes.html#list]) – The biases for the fc layers.

	num_fc_cm_layers (int [https://docs.python.org/3/library/functions.html#int]) – The number of context-modulation
layers associated with this set of fully-connected layers.

	cm_fc_layer_weights (list [https://docs.python.org/3/library/stdtypes.html#list]) – The context-modulation weights
associated with the current layers.

	cm_offset (int [https://docs.python.org/3/library/functions.html#int]) – The index to access the correct context-mod
layers.

	cmod_cond (bool [https://docs.python.org/3/library/functions.html#bool]) – Some condition to perform context modulation.

	is_post_fc (bool [https://docs.python.org/3/library/functions.html#bool]) – layers of the network. In this case, there will be no
activation applied to the last layer outputs.

	ret_hidden (list [https://docs.python.org/3/library/stdtypes.html#list] or None) – The list where to append the hidden
recurrent activations.

	Returns:

	Tuple containing:

	ret_hidden: The hidden recurrent activations.

	h: Transformed activation h.

	Return type:

	(Tuple)

	
compute_hidden_states(x, layer_ind, int_weights, cm_weights, ckpt_id, h_0=None, c_0=None)

	Compute the hidden states for the recurrent layer layer_ind from
a sequence of inputs [image: x].

If so specified, context modulation is applied before or after the
nonlinearities.

	Parameters:

	
	x – The inputs [image: x] to the layer. [image: x] has shape
[sequence_len, batch_size, n_hidden_prev].

	layer_ind (int [https://docs.python.org/3/library/functions.html#int]) – Index of the layer.

	int_weights – Internal weights associated with this recurrent layer.

	cm_weights – Context modulation weights.

	ckpt_id – Will be passed as option ckpt_id to method
utils.context_mod_layer.ContextModLayer.forward() if
context-mod layers are used.

	h_0 (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor], optional) – The initial state for [image: h].

	c_0 (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor], optional) – The initial state for [image: c]. Note
that for LSTMs, if the initial state is to be defined, this
variable is necessary also, not only [image: h_0], whereas for
vanilla RNNs it is enough to provide [image: h_0] as [image: c_0]
represents the output of the layer and it can be easily computed
from h_0.

	Returns:

	Tuple containing:

	outputs (torch.Tensor): The sequence of visible hidden states
given the input. It has shape
[sequence_len, batch_size, n_hidden].

	hiddens (torch.Tensor): The sequence of hidden states given
the input. For LSTMs, this corresponds to [image: c].
It has shape [sequence_len, batch_size, n_hidden].

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(x, weights=None, distilled_params=None, condition=None, return_hidden=False, return_hidden_int=False)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – See argument weights of method
mnets.mlp.MLP.forward().

	condition (optional, int [https://docs.python.org/3/library/functions.html#int]) – If provided, then this argument will be
passed as argument ckpt_id to the method
utils.context_mod_layer.ContextModLayer.forward().

	return_hidden (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, all hidden activations
of fully-connected and recurrent layers (where we defined
[image: y_t] as hidden state of vannila RNN layers as these are
the layer output passed to the next layer) are returned.

Specifically, hidden activations are the outputs of each hidden
layer that are passed to the next layer.

	return_hidden_int (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, in addition to
hidden, an additional variable hidden_int is returned
containing the internal hidden states of recurrent layers (i.e.,
the cell states [image: c_t] for LSTMs and the actual hidden
state [image: h_t] for Elman layers) are returned. Since fully-
connected layers have no such internal hidden activations, the
corresponding entry in hidden_int will be None.

	Returns:

	Where the tuple is containing:

	output (torch.Tensor): The output of the network.

	hidden (list): If return_hidden is True, then the
hidden activities of the layers are returned, which have
the shape (seq_length, batch_size, n_hidden).

	hidden_int (list): If return_hidden_int is True, then
in addition to hidden a tensor hidden_int per recurrent
layer is returned containing internal hidden states. The list will
contain a None entry for each fully-connected layer to ensure
same length as hidden.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
get_cm_inds()

	Get the indices of
mnets.mnet_interface.MainNetInterface.param_shapes that are
associated with context-modulation.

	Returns:

	List of integers representing indices of
mnets.mnet_interface.MainNetInterface.param_shapes.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_cm_weights()

	Get internal maintained weights that are associated with context-
modulation.

	Returns:

	List of weights from
mnets.mnet_interface.MainNetInterface.internal_params that
are belonging to context-mod layers.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_non_cm_weights()

	Get internal weights that are not associated with context-modulation.

	Returns:

	List of weights from
mnets.mnet_interface.MainNetInterface.internal_params that
are not belonging to context-mod layers.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_output_weight_mask(out_inds=None, device=None)

	Get masks to select output weights.

See docstring of overwritten super method
mnets.mnet_interface.MainNetInterface.get_output_weight_mask().

	
init_hh_weights_orthogonal()

	Initialize hidden-to-hidden weights orthogonally.

This method will overwrite the hidden-to-hidden weights of recurrent
layers.

	
lstm_rnn_step(d, t, x_t, h_t, int_weights, cm_weights, ckpt_id, is_last_step)

	Perform an LSTM pass from inputs to hidden units.

Apply masks to the temporal sequence for computing the loss.
Obtained from:

https://mlexplained.com/2019/02/15/building-an-lstm-from-scratch-in-pytorch-lstms-in-depth-part-1/

and:

https://d2l.ai/chapter_recurrent-neural-networks/lstm.html

	Parameters:

	
	d (int [https://docs.python.org/3/library/functions.html#int]) – Index of the layer.

	t (int [https://docs.python.org/3/library/functions.html#int]) – Current timestep.

	x_t – Tensor of size [batch_size, n_inputs] with inputs.

	h_t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of length 2, containing two tensors of size
[batch_size, n_hidden] with previous hidden states h and
c.

	int_weights – See docstring of method basic_rnn_step().

	cm_weights – See docstring of method basic_rnn_step().

	ckpt_id – See docstring of method basic_rnn_step().

	is_last_step (bool [https://docs.python.org/3/library/functions.html#bool]) – See docstring of method basic_rnn_step().

	Returns:

	Tuple containing:

	h_t (torch.Tensor): The tensor h_t of size
[batch_size, n_hidden] with the new hidden state.

	c_t (torch.Tensor): The tensor c_t of size
[batch_size, n_hidden] with the new cell state.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property num_rec_layers

	Number of recurrent layers in this network (i.e., length of
constructor argument rnn_layers).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
split_cm_weights(cm_weights, condition, num_ts=0)

	Split context-mod weights per context-mod layer.

	Parameters:

	
	cm_weights (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – All context modulation weights.

	condition (optional, int [https://docs.python.org/3/library/functions.html#int]) – If provided, then this argument will be
passed as argument ckpt_id to the method
utils.context_mod_layer.ContextModLayer.forward().

	num_ts (int [https://docs.python.org/3/library/functions.html#int]) – The length of the sequences.

	Returns:

	Where the tuple contains:

	cm_inputs_weights: The cm input weights.

	cm_fc_pre_layer_weights: The cm pre-recurrent weights.

	cm_rec_layer_weights: The cm recurrent weights.

	cm_fc_layer_weights: The cm post-recurrent weights.

	n_cm_rec: The number of recurrent cm layers.

	cmod_cond: The context-mod condition.

	Return type:

	(Tuple)

	
split_internal_weights(int_weights)

	Split internal weights per layer.

	Parameters:

	int_weights (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – All internal weights.

	Returns:

	Where the tuple contains:

	fc_pre_w_weights: The pre-recurrent w weights.

	fc_pre_b_weights: The pre-recurrent b weights.

	rec_weights: The recurrent weights.

	fc_w_weights:The post-recurrent w weights.

	fc_b_weights: The post-recurrent b weights.

	Return type:

	(Tuple)

	
split_weights(weights)

	Split weights into internal and context-mod weights.

Extract which weights should be used, I.e., are we using internally
maintained weights or externally given ones or are we even mixing
between these groups.

	Parameters:

	weights (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – All weights.

	Returns:

	Where the tuple contains:

	int_weights: The internal weights.

	cm_weights: The context-mod weights.

	Return type:

	(Tuple)

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property use_lstm

	See constructor argument use_lstm.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Wide-ResNet

The module mnets.wide_resnet implements the class of Wide Residual
Networks as described in:

Zagoruyko et al.,
“Wide Residual Networks” [https://arxiv.org/abs/1605.07146], 2017.

	
class hypnettorch.mnets.wide_resnet.WRN(in_shape=(32, 32, 3), num_classes=10, n=4, k=10, num_feature_maps=(16, 16, 32, 64), use_bias=True, use_fc_bias=None, no_weights=False, use_batch_norm=True, bn_track_stats=True, distill_bn_stats=False, dropout_rate=-1, chw_input_format=False, verbose=True, **kwargs)

	Bases: Classifier

Hypernet-compatible Wide Residual Network (WRN).

In the documentation of this class, we follow the notation of the original
paper [https://arxiv.org/abs/1605.07146]:

	[image: l] - deepening factor (number of convolutional layers per residual
block). In our case, [image: l] is always going to be 2, as this was the
configuration found to work best by the authors.

	[image: k] - widening factor (multiplicative factor for the number of
features in a convolutional layer, see argument k).

	[image: B(3,3)] - the block structure. The numbers denote the size of the
quadratic kernels used in each convolutional layer from a block. Note, the
authors found that [image: B(3,3)] works best, which is why we use this
configuration.

	[image: d] - total number of convolutional layers. Note, here we deviate
from the original notation (where this quantity is called [image: n]).
Though, we want our notation to stay consistent with the one used in class
mnets.resnet.ResNet.

	[image: n] - number of residual blocks in a group. Note, a resnet consists
of 3 groups of residual blocks. See also argument n of class
mnets.resnet.ResNet.

Given this notation, the original paper denotes a WRN architecture via the
following notation: WRN-d-k-B(3,3). Note, [image: d] contains the total
number of convolutional layers (including the input layer and all residual
connections that are realized via 1x1 convolutions), but it does not contain
the final fully-connected layer. The total depth of the network (assuming
residual connection do not add to this depth) remains [image: 6n+2] as for
mnets.resnet.ResNet.

Notable implementation differences to mnets.resnet.ResNet
(some differences might vanish in the future, this list was updated on
05/06/2020):

	Within a block, convolutional layers are preceeded by a batchnorm layer
and the application of the nonlinearity. This changes the structure within
a block and therefore, residual connections interface with the network at
different locations than in class mnets.resnet.ResNet.

	Dropout can be used. It will act right after the first convolutional layer
of each block.

	If the number of feature maps differs along a skip connection or a
downsampling has been applied, 1x1 convolutions rather than padding and
manual downsampling is used.

	Parameters:

	
	in_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The shape of an input sample in format
HWC.

	Note
	We assume the Tensorflow format, where the last entry
denotes the number of channels. Also, see argument
chw_input_format.

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – The number of output neurons.

Note

The network outputs logits.

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of residual blocks per group.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The widening factor. Feature maps in the 3 convolutional groups
will be multiplied by this number. See argument
num_feature_maps.

	num_feature_maps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of 4 integers, each denoting the number
of feature maps of convolutional layers in a certain group of the
network architecture. The first entry is the number of feature
maps of the first convolutional layer, the remaining 3 numbers
determine the number of feature maps in the consecutive groups
comprising [image: 2n] convolutional layers each.

Note

The last 3 entries of this list are multiplied by the factor
k.
use_bias (bool): Whether layers may have bias terms.

	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether layers may have bias terms.

Note

Bias terms are unnecessary in convolutional layers if batch
normalization is used. However, this option disables bias terms
altogether (including in the final fully-connected layer). See
option use_fc_bias.

	use_fc_bias (optional, bool [https://docs.python.org/3/library/functions.html#bool]) – If None, the value will be linked to
use_bias. Otherwise, this option can alter the usage of bias
terms in the final layer compared to the remaining (convolutional)
layers in the network.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

Note, this also affects the affine parameters of the
batchnorm layer. I.e., if set to True, then the argument
affine of utils.batchnorm_layer.BatchNormLayer
will be set to False and we expect the batchnorm parameters
to be passed to the forward().

	use_batch_norm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether batch normalization should used.
There will be a batchnorm layer after each convolutional layyer
(excluding possible 1x1 conv layers in the skip connections).
However, the logical order is as follows: batchnorm layer -> ReLU ->
convolutional layer. Hence, a residual block (containing multiple of
these logical units) starts before a batchnorm layer and ends after
a convolutional layer.

	bn_track_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – See argument bn_track_stats of class
mnets.resnet.ResNet.

	distill_bn_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – See argument bn_track_stats of class
mnets.resnet.ResNet.

	dropout_rate (float [https://docs.python.org/3/library/functions.html#float]) – If -1, no dropout will be applied. Otherwise a
number between 0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the first convolutional layers
(and before the second batchnorm layer) in each residual block.

	chw_input_format (bool [https://docs.python.org/3/library/functions.html#bool]) – Due to legacy reasons, the network expects
by default flattened images as input that were encoded in the
HWC format. When enabling this option, the network expects
unflattened images in the CHW format (as typical for PyTorch).

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow printing of general information about the
generated network (such as number of weights).

	**kwargs – Keyword arguments regarding context modulation. This class
can process the same context-modulation related arguments as class
mnets.mlp.MLP. One may additionally specify the argument
context_mod_apply_pixel_wise (see class
mnets.resnet.ResNet).

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This method will return the current batch statistics of all batch
normalization layers if distill_bn_stats and use_batch_norm
were set to True in the constructor.

	Returns:

	The target tensors corresponding to the shapes specified in
attribute hyper_shapes_distilled.

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.resnet.ResNet.forward(). We provide some more
specific information below.

	x (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Based on the constructor argument
chw_input_format, either a flattened image batch with
encoding HWC or an unflattened image batch with encoding
CHW is expected.

	Returns:

	The output of the network.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
get_output_weight_mask(out_inds=None, device=None)

	Create a mask for selecting weights connected solely to certain
output units.

See docstring of overwritten super method
mnets.mnet_interface.MainNetInterface.get_output_weight_mask().

	
property has_bias

	Getter for read-only attribute has_bias.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

The Convnet used by Zenke et al. for CIFAR-10/100

The module mnets/zenkenet contains a reimplementation of the network
that was used in

“Continual Learning Through Synaptic Intelligence”, Zenke et al., 2017.
https://arxiv.org/abs/1703.04200

	
class hypnettorch.mnets.zenkenet.ZenkeNet(in_shape=(32, 32, 3), num_classes=10, verbose=True, arch='cifar', no_weights=False, init_weights=None, dropout_rate=0.25)

	Bases: Classifier

The network consists of four convolutional layers followed by two fully-
connected layers. See implementation for details.

ZenkeNet is a network introduced in

“Continual Learning Through Synaptic Intelligence”, Zenke et al., 2017.

See Appendix for details.

We use the same network for a fair comparison to the results reported in the
paper.

	Parameters:

	
	in_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The shape of an input sample.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – The number of output neurons. The chosen architecture
(see arch) will be adopted accordingly.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow printing of general information about the
generated network (such as number of weights).

	arch (str [https://docs.python.org/3/library/stdtypes.html#str]) – The architecture to be employed. The following options are
available.

	cifar: The convolutional network used by Zenke et al.
for their proposed split CIFAR-10/100 experiment.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward() method.

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.

	dropout_rate (float [https://docs.python.org/3/library/functions.html#float]) – If -1, no dropout will be applied. Otherwise a
number between 0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the convolutional layers
(before pooling) and after the first fully-connected layer
(after the activation function).

Note

For the FC layer, the dropout rate is doubled.

Initialize the network.

	Parameters:

	
	num_classes – The number of output neurons.

	verbose – Allow printing of general information about the generated
network (such as number of weights).

	
distillation_targets()

	Targets to be distilled after training.

See docstring of abstract super method
mnets.mnet_interface.MainNetInterface.distillation_targets().

This network does not have any distillation targets.

	Returns:

	None

	
forward(x, weights=None, distilled_params=None, condition=None)

	Compute the output [image: y] of this network given the input
[image: x].

	Parameters:

	
	(....) – See docstring of method
mnets.mnet_interface.MainNetInterface.forward(). We
provide some more specific information below.

	x – Input image.

Note

We assume the Tensorflow format, where the last entry
denotes the number of channels.

	Returns:

	The output of the network.

	Return type:

	y

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

Utilities and helper functions

Contents

	Utilities and helper functions

	Batch Normalization

	Common command-line arguments

	Important note for contributors

	Context-modulation layer

	Elastic Weight Consolidation

	Helper functions for training Generative Adversarial Networks

	Hamiltonian-Monte-Carlo

	Hypernetwork Regularization

	Helper functions for weight initialization

	2D-convolutional layer without weight sharing

	Console/file logging

	Miscellaneous Utilities

	Compute Parameter Changes without Update Steps

	Self-Attention Layer

	Synaptic Intelligence

	General helper functions for simulations

	Checkpointing PyTorch Models

This subpackage contains common helper functions to a variety of problems (e.g., PyTorch checkpointing, special layers, computing diagonal Fisher matrices, …).

Batch Normalization

Implementation of a hypernet compatible batchnorm layer.

The joint use of batch-normalization and hypernetworks is not straight forward,
mainly due to the statistics accumulated by the batch-norm operation which
expect the weights of the main network to only change slowly. If a hypernetwork
replaces the whole set of weights, the statistics previously estimated by the
batch-norm layer might be completely off.

To circumvent this problem, we provide multiple solutions:

	In a continual learning setting with one set of weights per task, we can
simply estimate and store statistics per task (hence, the batch-norm
operation has to be conditioned on the task).

	The statistics are distilled into the hypernetwork. This would require
the addition of an extra loss term.

	The statistics can be treated as parameters that are outputted by the
hypernetwork. In this case, nothing enforces that these “statistics”
behave similar to statistics that would result from a running estimate
(hence, the resulting operation might have nothing in common with batch-
norm).

	Always use the statistics estimated on the current batch.

Note, we also provide the option of turning off the statistics, in which case
the statistics will be set to zero mean and unit variance. This is helpful when
interpreting batch-normalization as a general form of gain modulation (i.e.,
just applying a shift and scale to neural activities).

	
class hypnettorch.utils.batchnorm_layer.BatchNormLayer(num_features, momentum=0.1, affine=True, track_running_stats=True, frozen_stats=False, learnable_stats=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Hypernetwork-compatible batch-normalization layer.

Note, batch normalization performs the following operation

[image: y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \ \gamma + \beta]

This class allows to deviate from this standard implementation in order to
provide the flexibility required when using hypernetworks. Therefore, we
slightly change the notation to

[image: y = \frac{x - m_{\text{stats}}^{(t)}}{\sqrt{v_{\text{stats}}^{(t)} + \ \epsilon}} * \gamma^{(t)} + \beta^{(t)}]

We use this notation to highlight that the running statistics
[image: m_{\text{stats}}^{(t)}] and [image: v_{\text{stats}}^{(t)}] are not
necessarily estimates resulting from mean and variance computation but might
be learned parameters (e.g., the outputs of a hypernetwork).

We additionally use the superscript [image: (t)] to denote that the gain
[image: \gamma], offset [image: \beta] and statistics may be dynamically
selected based on some external context information.

This class provides the possibility to checkpoint statistics
[image: m_{\text{stats}}^{(t)}] and [image: v_{\text{stats}}^{(t)}], but
not gains and offsets.

Note

If context-dependent gains [image: \gamma^{(t)}] and offsets
[image: \beta^{(t)}] are required, then they have to be maintained
externally, e.g., via a task-conditioned hypernetwork (see
this paper [https://arxiv.org/abs/1906.00695] for an example) and passed to the forward() method.

	Parameters:

	
	num_features – See argument num_features, for instance, of class
torch.nn.BatchNorm1d [https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d].

	momentum – See argument momentum of class
torch.nn.BatchNorm1d [https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d].

	affine – See argument affine of class
torch.nn.BatchNorm1d [https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d]. If set to False, the
input activity will simply be “whitened” according to the
applied layer statistics (except if gain [image: \gamma] and
offset [image: \beta] are passed to the forward() method).

Note, if learnable_stats is False, then setting
affine to False results in no learnable weights for
this layer (running stats might still be updated, but not via
gradient descent).

Note, even if this option is False, one may still pass a
gain [image: \gamma] and offset [image: \beta] to the
forward() method.

	track_running_stats – See argument track_running_stats of class
torch.nn.BatchNorm1d [https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d].

	frozen_stats – If True, the layer statistics are frozen at their
initial values of [image: \gamma = 1] and [image: \beta = 0],
i.e., layer activity will not be whitened.

Note, this option requires track_running_stats to be set to
False.

	learnable_stats – If True, the layer statistics are initialized
as learnable parameters (requires_grad=True).

Note, these extra parameters will be maintained internally and
not added to the weights. Statistics can always be
maintained externally and passed to the forward() method.

Note, this option requires track_running_stats to be set to
False.

	
checkpoint_stats(device=None)

	Buffers for a new set of running stats will be registered.

Calling this function will also increment the attribute
num_stats.

	Parameters:

	device (optional) – If not provided, the newly created statistics
will either be moved to the device of the most recent statistics
or to CPU if no prior statistics exist.

	
forward(inputs, running_mean=None, running_var=None, weight=None, bias=None, stats_id=None)

	Apply batch normalization to given layer activations.

Based on the state if this module (attribute training), the
configuration of this layer and the parameters currently passed, the
behavior of this function will be different.

The core of this method still relies on the function
torch.nn.functional.batch_norm() [https://pytorch.org/docs/master/generated/torch.nn.functional.batch_norm.html#torch.nn.functional.batch_norm]. In the following we list the
different behaviors of this method based on the context.

In training mode:

We first consider the case that this module is in training mode, i.e.,
torch.nn.Module.train() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.train] has been called.

Usually, during training, the running statistics are not used when
computing the output, instead the statistics computed on the current
batch are used (denoted by use batch stats in the table below).
However, the batch statistics are typically updated during training
(denoted by update running stats in the table below).

The above described scenario would correspond to passing batch
statistics to the function torch.nn.functional.batch_norm() [https://pytorch.org/docs/master/generated/torch.nn.functional.batch_norm.html#torch.nn.functional.batch_norm] and
setting the parameter training to True.

	training mode

	use batch stats

	update running stats

	given stats

	Yes

	Yes

	track running stats

	Yes

	Yes

	frozen stats

	No

	No

	learnable stats

	Yes

	Yes [1]

	no track running stats

	Yes

	No

The meaning of each row in this table is as follows:

	given stats: External stats are provided via the parameters
running_mean and running_var.

	track running stats: If track_running_stats was set to
True in the constructor and no stats were given.

	frozen stats: If frozen_stats was set to True in the
constructor and no stats were given.

	learnable stats: If learnable_stats was set to True in
the constructor and no stats were given.

	no track running stats: If none of the above options apply,
then the statistics will always be computed from the current batch
(also in eval mode).

Note

If provided, running stats specified via running_mean and
running_var always have priority.

[1]
We use a custom implementation to update the running statistics,
that is compatible with backpropagation.

In evaluation mode:

We now consider the case that this module is in evaluation mode, i.e.,
torch.nn.Module.eval() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.eval] has been called.

Here is the same table as above just for the evaluation mode.

	evaluation mode

	use batch stats

	update running stats

	track running stats

	No

	No

	frozen stats

	No

	No

	learnable stats

	No

	No

	given stats

	No

	No

	no track running stats

	Yes

	No

	Parameters:

	
	inputs – The inputs to the batchnorm layer.

	running_mean (optional) – Running mean stats
[image: m_{\text{stats}}]. This option has priority, i.e., any
internally maintained statistics are ignored if given.

Note

If specified, then running_var also has to be specified.

	running_var (optional) – Similar to option running_mean, but for
the running variance stats [image: v_{\text{stats}}]

Note

If specified, then running_mean also has to be
specified.

	weight (optional) – The gain factors [image: \gamma]. If given, any
internal gains are ignored. If option affine was set to
False in the constructor and this option remains None,
then no gains are multiplied to the “whitened” inputs.

	bias (optional) – The behavior of this option is similar to option
weight, except that this option represents the offsets
[image: \beta].

	stats_id – This argument is optional except if multiple running
stats checkpoints exist (i.e., attribute num_stats is
greater than 1) and no running stats have been provided to this
method.

Note

This argument is ignored if running stats have been passed.

	Returns:

	The layer activation inputs after batch-norm has been applied.

	
get_stats(stats_id=None)

	Get a set of running statistics (means and variances).

	Parameters:

	stats_id (optional) – ID of stats. If not provided, the most recent
stats are returned.

	Returns:

	Tuple containing:

	running_mean

	running_var

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property hyper_shapes

	A list of list of integers. Each list represents the shape of a
weight tensor that can be passed to the forward() method. If all
weights are maintained internally, then this attribute will be None.

Specifically, this attribute is controlled by the argument affine.
If affine is True, this attribute will be None. Otherwise
this attribute contains the shape of [image: \gamma] and [image: \beta].

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

	
property num_stats

	The number [image: T] of internally managed statistics
[image: \{(m_{\text{stats}}^{(1)}, v_{\text{stats}}^{(1)}), \dots, \ (m_{\text{stats}}^{(T)}, v_{\text{stats}}^{(T)}) \}]. This number is
incremented everytime the method checkpoint_stats() is called.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property param_shapes

	A list of list of integers. Each list represents the shape of a
parameter tensor.

Note, this attribute is independent of the attribute weights,
it always comprises the shapes of all weight tensors as if the network
would be stand-alone (i.e., no weights being passed to the
forward() method).
Note, unless learnable_stats is enabled, the layer statistics are
not considered here.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property weights

	A list of all internal weights of this layer. If all weights are
assumed to be generated externally, then this attribute will be
None.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or None

Common command-line arguments

This file has a collection of helper functions that can be used to specify
command-line arguments. In particular, arguments that are necessary for
multiple experiments (even though with different default values) should be
specified here, such that we do not define arguments (and their help texts)
multiple times.

All functions specified here are helper functions for a simulation specific
argument parser such as cifar.train_args.parse_cmd_arguments().

Important note for contributors

DO NEVER CHANGE DEFAULT VALUES. Instead, add a keyword argument to the
corresponding method, that allows you to change the default value, when you
call the method.

	
hypnettorch.utils.cli_args.check_invalid_argument_usage(args)

	This method checks for common conflicts when using the arguments defined
by methods in this module.

The following things will be checked:

	Based on the optimizer choices specified in train_args(), we
assert here that only one optimizer is selected at a time.

	Assert that clip_grad_value and clip_grad_norm are not set at the
same time.

	Assert that split_head_cl3 is only set for cl_scenario=3

	Assert that the arguments specified in function main_net_args()
are correctly used.

Note

The checks can’t handle prefixes yet.

	Parameters:

	args – The parsed command-line arguments, i.e., the output of method
argparse.ArgumentParser.parse_args() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args].

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If invalid argument combinations are used.

	
hypnettorch.utils.cli_args.cl_args(parser, show_beta=True, dbeta=0.01, show_from_scratch=False, show_multi_head=False, show_cl_scenario=False, show_split_head_cl3=True, dcl_scenario=1, show_num_tasks=False, dnum_tasks=1, show_num_classes_per_task=False, dnum_classes_per_task=2, show_calc_hnet_reg_targets_online=False, show_hnet_reg_batch_size=False, dhnet_reg_batch_size=-1)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for typical continual learning arguments.

	Arguments specified in this function:
	
	beta

	train_from_scratch

	multi_head

	cl_scenario

	split_head_cl3

	num_tasks

	num_classes_per_task

	calc_hnet_reg_targets_online

	hnet_reg_batch_size

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	show_beta – Whether option beta should be shown.

	dbeta – Default value of option beta.

	show_from_scratch – Whether option train_from_scratch should be shown.

	show_multi_head – Whether option multi_head should be shown.

	show_cl_scenario – Whether option cl_scenario should be shown.

	show_split_head_cl3 – Whether option split_head_cl3 should be shown.
Only has an effect if show_cl_scenario is True.

	dcl_scenario – Default value of option cl_scenario.

	show_num_tasks – Whether option num_tasks should be shown.

	dnum_tasks – Default value of option num_tasks.

	show_num_classes_per_task – Whether option show_num_classes_per_task
should be shown.

	dnum_classes_per_task – Default value of option dnum_classes_per_task.

	show_calc_hnet_reg_targets_online (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option
calc_hnet_reg_targets_online should be provided.

	show_hnet_reg_batch_size (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option
hnet_reg_batch_size should be provided.

	dhnet_reg_batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of option
hnet_reg_batch_size.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.data_args(parser, show_disable_data_augmentation=False, show_data_dir=False, ddata_dir='.')

	This is a helper method of the function parse_cmd_arguments to add
an argument group for typical dataset related options.

	Arguments specified in this function:
	
	disable_data_augment

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	show_disable_data_augmentation (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether option
disable_data_augmentation should be shown.

	show_data_dir (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether option data_dir should be shown.

	ddata_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default value of option data_dir.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.eval_args(parser, dval_iter=500, show_val_batch_size=False, dval_batch_size=256, show_val_set_size=False, dval_set_size=0, show_test_with_val_set=False)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for validation and testing options.

	Arguments specified in this function:
	
	val_iter

	val_batch_size

	val_set_size

	test_with_val_set

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	dval_iter (int [https://docs.python.org/3/library/functions.html#int]) – Default value of argument val_iter.

	show_val_batch_size (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the val_batch_size argument should
be shown.

	dval_batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of argument val_batch_size.

	show_val_set_size (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the val_set_size argument should be
shown.

	dval_set_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of argument val_set_size.

	show_test_with_val_set (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the test_with_val_set argument
should be shown.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.gan_args(parser)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for options to configure the generator and discriminator
network.

Deprecated since version 1.0: Please use method main_net_args() and generator_args()
instead.

	Parameters:

	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.generator_args(agroup, dlatent_dim=3)

	This is a helper method of the method parse_cmd_arguments (or more
specifically an auxillary method to train_args()) to add arguments to
an argument group for options specific to a main network that should act as
a generator.

	Arguments specified in this function:
	
	latent_dim

	latent_std

	Parameters:

	
	agroup – The argument group returned by, for instance, function
main_net_args().

	dlatent_dim – Default value of option latent_dim.

	
hypnettorch.utils.cli_args.hnet_args(parser, allowed_nets=['hmlp'], dhmlp_arch='100,100', show_cond_emb_size=True, dcond_emb_size='8', dchmlp_chunk_size=1000, dchunk_emb_size=8, show_use_cond_chunk_embs=True, dhdeconv_shape='512,512,3', prefix=None, pf_name=None, **kwargs)

	This is a helper function to add an argument group for hypernetwork-
specific arguments to a given argument parser.

	Arguments specified in this function:
	
	hnet_type

	hmlp_arch

	cond_emb_size

	chmlp_chunk_size

	chunk_emb_size

	use_cond_chunk_embs

	hdeconv_shape

	hdeconv_num_layers

	hdeconv_filters

	hdeconv_kernels

	hdeconv_attention_layers

	Parameters:

	
	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – The parser to which an argument group
should be added

	allowed_nets (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of allowed network identifiers. The following
identifiers are considered (note, we also reference the network that
each network type targets):

	'hmlp': hnets.mlp_hnet.HMLP

	'chunked_hmlp': hnets.chunked_mlp_hnet.ChunkedHMLP

	'structured_hmlp':
hnets.structured_mlp_hnet.StructuredHMLP

	'hdeconv': hnets.deconv_hnet.HDeconv

	'chunked_hdeconv':
hnets.chunked_deconv_hnet.ChunkedHDeconv

	dhmlp_arch (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default value of option hmlp_arch.

	show_cond_emb_size (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option cond_emb_size should be
provided.

	dcond_emb_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of option cond_emb_size.

	dchmlp_chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of option chmlp_chunk_size.

	dchunk_emb_size (int [https://docs.python.org/3/library/functions.html#int]) – Default value of option chunk_emb_size.

	show_use_cond_chunk_embs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option
use_cond_chunk_embs should be provided (if applicable to
network types).

	dhdeconv_shape (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default value of option hdeconv_shape.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If arguments should be instantiated with a
certain prefix. E.g., a setup requires several hypernetworks, that
may need different settings. For instance: prefix='gen_'.

	pf_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A name of type of hypernetwork for which that
prefix is needed. For instance: prefix='generator'.

	**kwargs – Keyword arguments to configure options that are common across
main networks (note, a hypernet is just a special main network). See
arguments of main_net_args().

	Returns:

	The created argument group containing the
desired options.

	Return type:

	(argparse._ArgumentGroup)

	
hypnettorch.utils.cli_args.init_args(parser, custom_option=True, show_normal_init=True, show_hyper_fan_init=False)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for options regarding network initialization.

	Arguments specified in this function:
	
	custom_network_init

	normal_init

	std_normal_init

	std_normal_temb

	std_normal_emb

	hyper_fan_init

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	custom_option (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option custom_network_init should be
provided.

	show_normal_init (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option normal_init and
std_normal_init should be provided.

	show_hyper_fan_init (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option hyper_fan_init should
be provided.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.main_net_args(parser, allowed_nets=['mlp'], dmlp_arch='100,100', dlenet_type='mnist_small', dcmlp_arch='10,10', dcmlp_chunk_arch='10,10', dcmlp_in_cdim=100, dcmlp_out_cdim=10, dcmlp_cemb_dim=8, dresnet_block_depth=5, dresnet_channel_sizes='16,16,32,64', dwrn_block_depth=4, dwrn_widening_factor=10, diresnet_channel_sizes='64,64,128,256,512', diresnet_blocks_per_group='2,2,2,2', dsrnn_rec_layers='10', dsrnn_pre_fc_layers='', dsrnn_post_fc_layers='', dsrnn_rec_type='lstm', show_net_act=True, dnet_act='relu', show_no_bias=False, show_dropout_rate=True, ddropout_rate=-1, show_specnorm=True, show_batchnorm=True, show_no_batchnorm=False, show_bn_no_running_stats=False, show_bn_distill_stats=False, show_bn_no_stats_checkpointing=False, prefix=None, pf_name=None)

	This is a helper function for the function parse_cmd_arguments to add
an argument group for options to a main network.

	Arguments specified in this function:
	
	net_type

	fc_arch

	mlp_arch

	lenet_type

	cmlp_arch

	cmlp_chunk_arch

	cmlp_in_cdim

	cmlp_out_cdim

	cmlp_cemb_dim

	resnet_block_depth

	resnet_channel_sizes

	wrn_block_depth

	wrn_widening_factor

	wrn_use_fc_bias

	iresnet_use_fc_bias

	iresnet_channel_sizes

	iresnet_blocks_per_group

	iresnet_bottleneck_blocks

	iresnet_projection_shortcut

	srnn_rec_layers

	srnn_pre_fc_layers

	srnn_post_fc_layers

	srnn_no_fc_out

	srnn_rec_type

	net_act

	no_bias

	dropout_rate

	specnorm

	batchnorm

	no_batchnorm

	bn_no_running_stats

	bn_distill_stats

	bn_no_stats_checkpointing

	Parameters:

	
	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – The argument parser to which
the argument group should be added.

	allowed_nets (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of allowed network identifiers. The following
identifiers are considered (note, we also reference the network that
each network type targets):

	mlp: mnets.mlp.MLP

	lenet: mnets.lenet.LeNet

	resnet: mnets.resnet.ResNet

	wrn: mnets.wide_resnet.WRN

	iresnet: mnets.resnet_imgnet.ResNetIN

	zenke: mnets.zenkenet.ZenkeNet

	bio_conv_net: mnets.bio_conv_net.BioConvNet

	chunked_mlp: mnets.chunk_squeezer.ChunkSqueezer

	simple_rnn: mnets.simple_rnn.SimpleRNN

	dmlp_arch – Default value of option mlp_arch.

	dlenet_type – Default value of option lenet_type.

	dcmlp_arch – Default value of option cmlp_arch.

	dcmlp_chunk_arch – Default value of option cmlp_chunk_arch.

	dcmlp_in_cdim – Default value of option cmlp_in_cdim.

	dcmlp_out_cdim – Default value of option cmlp_out_cdim.

	dcmlp_cemb_dim – Default value of option cmlp_cemb_dim.

	dresnet_block_depth – Default value of option resnet_block_depth.

	dresnet_channel_sizes – Default value of option resnet_channel_sizes.

	dwrn_block_depth – Default value of option wrn_block_depth.

	dwrn_widening_factor – Default value of option wrn_widening_factor.

	diresnet_channel_sizes – Default value of option
iresnet_channel_sizes.

	diresnet_blocks_per_group – Default value of option
iresnet_blocks_per_group.

	dsrnn_rec_layers – Default value of option srnn_rec_layers.

	dsrnn_pre_fc_layers – Default value of option srnn_pre_fc_layers.

	dsrnn_post_fc_layers – Default value of option srnn_post_fc_layers.

	dsrnn_rec_type – Default value of option srnn_rec_type.

	show_net_act (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option net_act should be provided.

	dnet_act – Default value of option net_act.

	show_no_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option no_bias should be provided.

	show_dropout_rate (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option dropout_rate should be
provided.

	ddropout_rate – Default value of option dropout_rate.

	show_specnorm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option specnorm should be provided.

	show_batchnorm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option batchnorm should be
provided.

	show_no_batchnorm (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option no_batchnorm should be
provided.

	show_bn_no_running_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option
bn_no_running_stats should be provided.

	show_bn_distill_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option bn_distill_stats
should be provided.

	show_bn_no_stats_checkpointing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the option
bn_no_stats_checkpointing should be provided.

	prefix (optional) – If arguments should be instantiated with a certain
prefix. E.g., a setup requires several main network, that may need
different settings. For instance: prefix=:code:prefix=’gen_’.

	pf_name (optional) – A name of the type of main net for which that prefix
is needed. For instance: prefix=:code:’generator’.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.miscellaneous_args(parser, big_data=True, synthetic_data=False, show_plots=False, no_cuda=False, dout_dir=None, show_publication_style=False)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for miscellaneous arguments.

	Arguments specified in this function:
	
	num_workers

	out_dir

	use_cuda

	no_cuda

	loglevel_info

	deterministic_run

	publication_style

	show_plots

	data_random_seed

	random_seed

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	big_data – If the program processes big datasets that need to be loaded
from disk on the fly. In this case, more options are provided.

	synthetic_data – If data is randomly generated, then we want to decouple
this randomness from the training randomness.

	show_plots – Whether the option show_plots should be provided.

	no_cuda – If True, the user has to explicitly set the flag –use_cuda
rather than using CUDA by default.

	dout_dir (optional) – Default value of option out_dir. If None,
the default value will be ./out/run_<YY>-<MM>-<DD>_<hh>-<mm>-<ss>
that contains the current date and time.

	show_publication_style – Whether the option publication_style should be
provided.

	Returns:

	The created argument group, in case more options should be added.

	
hypnettorch.utils.cli_args.train_args(parser, show_lr=False, dlr=0.1, show_epochs=False, depochs=-1, dbatch_size=32, dn_iter=100001, show_use_adam=False, dadam_beta1=0.9, show_use_rmsprop=False, show_use_adadelta=False, show_use_adagrad=False, show_clip_grad_value=False, show_clip_grad_norm=False, show_adam_beta1=False, show_momentum=True)

	This is a helper method of the method parse_cmd_arguments to add
an argument group for options to configure network training.

	Arguments specified in this function:
	
	batch_size

	n_iter

	epochs

	lr

	momentum

	weight_decay

	use_adam

	adam_beta1

	use_rmsprop

	use_adadelta

	use_adagrad

	clip_grad_value

	clip_grad_norm

	Parameters:

	
	parser – Object of class argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	show_lr – Whether the lr - learning rate - argument should be shown.
Might not be desired if individual learning rates per optimizer
should be specified.

	dlr – Default value for option lr.

	show_epochs – Whether the epochs argument should be shown.

	depochs – Default value for option epochs.

	dbatch_size – Default value for option batch_size.

	dn_iter – Default value for option n_iter.

	show_use_adam – Whether the use_adam argument should be shown. Will
also show the adam_beta1 argument.

	dadam_beta1 – Default value for option adam_beta1.

	show_use_rmsprop – Whether the use_rmsprop argument should be shown.

	show_use_adadelta – Whether the use_adadelta argument should be shown.

	show_use_adagrad – Whether the use_adagrad argument should be shown.

	show_clip_grad_value – Whether the clip_grad_value argument should be
shown.

	show_clip_grad_norm – Whether the clip_grad_norm argument should be
shown.

	show_adam_beta1 – Whether the adam_beta1 argument should be
shown. Note, this argument is also shown when show_use_adam is
True.

	show_momentum – Whether the momentum argument should be
shown.

	Returns:

	The created argument group, in case more options should be added.

Context-modulation layer

This module should represent a special gain-modulation layer that can modulate
neural computation based on an external context.

	
class hypnettorch.utils.context_mod_layer.ContextModLayer(num_features, no_weights=False, no_gains=False, no_shifts=False, apply_gain_offset=False, apply_gain_softplus=False, softplus_scale=1.0)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Implementation of a layer that can apply context-dependent modulation on
the level of neuronal computation.

The layer consists of two parameter vectors: gains [image: \mathbf{g}]
and shifts [image: \mathbf{s}], whereas gains represent a multiplicative
modulation of input activations and shifts an additive modulation,
respectively.

Note, the weight vectors [image: \mathbf{g}] and [image: \mathbf{s}] might
also be passed to the forward() method, where one may pass a separate
set of parameters for each sample in the input batch.

Example

Assume that a ContextModLayer is applied between a linear
(fully-connected) layer
[image: \mathbf{y} \equiv W \mathbf{x} + \mathbf{b}] with input
[image: \mathbf{x}] and a nonlinear activation function
[image: z \equiv \sigma(y)].

The layer-computation in such a case will become

[image: \sigma \big((W \mathbf{x} + \mathbf{b}) \odot \mathbf{g} + \ \mathbf{s} \big)]

	Parameters:

	
	num_features (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Number of units in the layer (size of
parameter vectors [image: \mathbf{g}] and [image: \mathbf{s}]).

In case a tuple of integers is provided, the gain
[image: \mathbf{g}] and shift [image: \mathbf{s}] parameters will
become multidimensional tensors with the shape being prescribed
by num_features. Please note the broadcasting rules [https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting- semantics] as
[image: \mathbf{g}] and [image: \mathbf{s}] are simply multiplied
or added to the input.

Example

Consider the output of a convolutional layer with output shape
[B,C,W,H]. In case there should be a scalar gain and shift
per feature map, num_features could be [C,1,1] or
[1,C,1,1] (one might also pass a shape [B,C,1,1] to the
forward() method to apply separate shifts and gains per
sample in the batch).

Alternatively, one might want to provide shift and gain per
output unit, i.e., num_features should be [C,W,H]. Note,
that due to weight sharing, all output activities within a
feature map are computed using the same weights, which is why it
is common practice to share shifts and gains within a feature
map (e.g., in Spatial Batch-Normalization).

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the layer will have no trainable weights
([image: \mathbf{g}] and [image: \mathbf{s}]). Hence, weights are
expected to be passed to the forward() method.

	no_gains (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, no gain parameters [image: \mathbf{g}] will
be modulating the input activity.

Note

Arguments no_gains and no_shifts might not be activated
simultaneously!

	no_shifts (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, no shift parameters [image: \mathbf{s}]
will be modulating the input activity.

	apply_gain_offset (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If activated, this option will apply
a constant offset of 1 to all gains, i.e., the computation becomes

[image: \sigma \big((W \mathbf{x} + \mathbf{b}) \odot \ (1 + \mathbf{g}) + \mathbf{s} \big)]

When could that be useful? In case the gains and shifts are
generated by the same hypernetwork, a meaningful initialization
might be difficult to achieve (e.g., such that gains are close to 1
and shifts are close to 0 at the beginning). Therefore, one might
initialize the hypernetwork such that all outputs are close to zero
at the beginning and the constant shift ensures that meaningful
gains are applied.

	apply_gain_softplus (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If activated, this option will
enforce poitive gain modulation by sending the gain weights
[image: \mathbf{g}] through a softplus function (scaled by [image: s],
see softplus_scale).

[image: \mathbf{g} = \frac{1}{s} \log(1+\exp(\mathbf{g} \cdot s))]

	softplus_scale (float [https://docs.python.org/3/library/functions.html#float]) – If option apply_gain_softplus is True,
then this will determine the sclae of the softplus function.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
checkpoint_weights(device=None, no_reinit=False)

	Checkpoint and reinit the current weights.

Buffers for a new checkpoint will be registered and the current weights
will be copied into them. Additionally, the current weights will be
reinitialized (gains to 1 and shifts to 0).

Calling this function will also increment the attribute
num_ckpts.

Note

This method uses the method torch.nn.Module.register_buffer() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.register_buffer]
rather than the method torch.nn.Module.register_parameter() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.register_parameter] to
create checkpoints. The reason is, that we don’t want the
checkpoints to appear as trainable weights (when calling
torch.nn.Module.parameters() [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.parameters]). However, that means that
training on checkpointed weights cannot be continued unless they are
copied back into an actual torch.nn.Parameter object.

	Parameters:

	
	device (optional) – If not provided, the newly created checkpoint
will be moved to the device of the current weights.

	no_reinit (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the actual weights will not
be reinitialized.

	
forward(x, weights=None, ckpt_id=None, bs_dim=0)

	Apply context-dependent gain modulation.

Computes [image: \mathbf{x} \odot \mathbf{g} + \mathbf{s}], where
[image: \mathbf{x}] denotes the input activity x.

	Parameters:

	
	x – The input activity.

	weights – Weights that should be used instead of the internally
maintained once (determined by attribute weights). Note,
if no_weights was True in the constructor, then this
parameter is mandatory.

Usually, the shape of the passed weights should follow the
attribute param_shapes, which is a tuple of shapes
[[num_features], [num_features]] (at least for linear
layers, see docstring of argument num_features in the
constructor for more details). However, one may also
specify a seperate set of context-mod parameters per input
sample. Assume x has shape [num_samples, num_features].
Then weights may have the shape
[[num_samples, num_features], [num_samples, num_features]].

	ckpt_id (int [https://docs.python.org/3/library/functions.html#int]) – This argument can be set in case a checkpointed set
of weights should be used to compute the forward pass (see
method checkpoint_weights()).

Note

This argument is ignored if weights is not None.

	bs_dim (int [https://docs.python.org/3/library/functions.html#int]) – Batch size dimension in input tensor x.

	Returns:

	The modulated input activity.

	
property gain_offset_applied

	Whether constructor argument apply_gain_offset was activated.

Thus, whether an offset for the gain [image: \mathbf{g}] is applied.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property gain_softplus_applied

	Whether constructor argument apply_gain_softplus was activated.

Thus, whether a softplus function for the gain [image: \mathbf{g}] is
applied.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_weights(ckpt_id=None)

	Get the current (or a set of checkpointed) weights of this context-
mod layer.

	Parameters:

	ckpt_id (optional) – ID of checkpoint. If not provided, the current
set of weights is returned.
If ckpt_id == self.num_ckpts, then this method also
returns the current weights, as the checkpoint has not been
created yet.

	Returns:

	Tuple containing:

	gain: Is None if layer has no gains.

	shift: Is None if layer has no shifts.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
property has_gains

	Is True if no_gains was not set in the constructor.

Thus, whether gains [image: \mathbf{g}] are part of the computation of
this layer.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property has_shifts

	Is True if no_shifts was not set in the constructor.

Thus, whether shifts [image: \mathbf{s}] are part of the computation of
this layer.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
normal_init(std=1.0)

	Reinitialize internal weights using a normal distribution.

	Parameters:

	std (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of init.

	
property num_ckpts

	The number of existing weight checkpoints (i.e., how often the method
checkpoint_weights() was called).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property param_shapes

	A list of list of integers. Each list represents the shape of a
parameter tensor. Note, this attribute is independent of the attribute
weights, it always comprises the shapes of all weight tensors as
if the network would be stand- alone (i.e., no weights being passed to
the forward() method).

Note

The weights passed to the forward() method might deviate
from these shapes, as we allow passing a distinct set of
parameters per sample in the input batch.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property param_shapes_meta

	List of strings. Each entry represents the meaning of the
corresponding entry in param_shapes. The following keywords are
possible:

	'gain': The corresponding shape in param_shapes
denotes the gain [image: \mathbf{g}] parameter.

	'shift': The corresponding shape in param_shapes
denotes the shift [image: \mathbf{s}] parameter.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
preprocess_gain(gain)

	Obtains gains [image: \mathbf{g}] used for mudulation.

Depending on the user configuration, gains might be preprocessed before
applied for context-modulation (e.g., see attributes
gain_offset_applied or gain_softplus_applied). This
method transforms raw gains such that they can be applied to the network
activation.

Note

This method is called by the forward() to transform given
gains.

	Parameters:

	gain (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – A gain tensor.

	Returns:

	The transformed gains.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	
sparse_init(sparsity=0.8)

	Reinitialize internal weights sparsely.

Gains will be initialized such that sparisity * 100 percent of them
will be 0, the remaining ones will be 1. Shifts are initialized to 0.

	Parameters:

	sparsity (float [https://docs.python.org/3/library/functions.html#float]) – A number between 0 and 1 determining the
spasity level of gains.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
uniform_init(width=1.0)

	Reinitialize internal weights using a uniform distribution.

	Parameters:

	width (float [https://docs.python.org/3/library/functions.html#float]) – The range of the uniform init will be determined
as [mean-width, mean+width], where mean is 0 for shifts
and 1 for gains.

	
property weights

	A list of all internal weights of this layer.

If all weights are assumed to be generated externally, then this
attribute will be None.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList] or None

Elastic Weight Consolidation

	Implementation of EWC:
	https://arxiv.org/abs/1612.00796

	Note, these implementation are based on the descriptions provided in:
	https://arxiv.org/abs/1809.10635

	The code is inspired by the corresponding implementation:
	https://git.io/fjcnL

	
hypnettorch.utils.ewc_regularizer.compute_fisher(task_id, data, params, device, mnet, hnet=None, empirical_fisher=True, online=False, gamma=1.0, n_max=-1, regression=False, time_series=False, allowed_outputs=None, custom_forward=None, custom_nll=None, pass_ids=False, proper_scaling=False, prior_strength=None, regression_lvar=1.0, target_manipulator=None)

	Compute estimates of the diagonal elements of the Fisher information
matrix, as needed as importance-weights by elastic weight consolidation
(EWC).

The Fisher matrix for a conditional distribution [image: p(y \mid \theta, x)]
(i.e., the model likelihood for a model with parameters [image: \theta]) is
defined as follows at location [image: x]

[image: \mathcal{F}(x) &= \textrm{Var} \big[\nabla_{\theta} \log p(y \mid \theta, x) \big] \\ &= \mathbb{E}_{p(y \mid \theta, x)} \big[\nabla_{\theta}\log p(y \mid \theta, x) \nabla_{\theta}\log p(y \mid \theta, x)^T\big]]

In practice, we are often interested in the Fisher averaged over locations

[image: \mathcal{F} = \mathbb{E}_{p(x)} [\mathcal{F}(x)]]

Since the model is trained, such that in-distribution the model likelihood
[image: p(y \mid \theta, x)] and the ground-truth likelihood
[image: p(y \mid x)] agree, people often refer to the empirical Fisher, which
utilizes the dataset for computation and therewith doesn’t require sampling
from the model likelihood. Note, EWC anyway assumes that in-distribution
[image: p(y \mid \theta, x) = p(y \mid x)] in order to be able to replace
the Hessian by the Fisher matrix.

[image: \mathcal{F}_{emp} &= \mathbb{E}_{p(x,y)} \big[\nabla_{\theta}\log p(y \mid \theta, x) \nabla_{\theta}\log p(y \mid \theta, x)^T\big] \\ &= \mathbb{E}_{p(x)} \Big[\mathbb{E}_{p(y \mid x)} \big[\nabla_{\theta}\log p(y \mid \theta, x) \nabla_{\theta}\log p(y \mid \theta, x)^T\big] \Big] \\ &\approx \frac{1}{|\mathcal{D}|} \sum_{(x_n, y_n) \sim \mathcal{D}} \big[\nabla_{\theta}\log p(y_n \mid \theta, x_n) \nabla_{\theta}\log p(y_n \mid \theta, x_n)^T\big] \Big]]

Note

This method registers buffers in the given module (storing the
current parameters and the estimate of the Fisher diagonal elements),
i.e., the mnet if hnet is None, otherwise the hnet.

	Parameters:

	
	task_id – The ID of the current task, needed to store the computed
tensors with a unique name. When hnet is given, it is used as
input to the hnet forward method to select the current task
embedding.

	data – A data handler. We will compute the Fisher estimate across the
whole training set (except n_max is specified).

	params – A list of parameter tensors from the module of which we aim to
compute the Fisher for. If hnet is given, then these are assumed
to be the “theta” parameters, that we pass to the forward function
of the hypernetwork. Otherwise, these are the “weights” passed to
the forward method of the main network.
Note, they might not be detached from their original parameters,
because we use backward() on the computational graph to read out
the .grad variable.
Note, the order in which these parameters are passed to this method
and the corresponding EWC loss function must not change, because
the index within the “params” list will be used as unique
identifier.

	device – Current PyTorch device.

	mnet – The main network. If hnet is None, then params are
assumed to belong to this network. The fisher estimate will be
computed accordingly.
Note, params might be the output of a task-conditioned
hypernetwork, i.e., weights for a specific task. In this case,
“online”-EWC doesn’t make much sense, as we don’t follow the
Bayesian view of using the old task weights as prior for the current
ones. Instead, we have a new set of weights for all tasks.

	hnet (optional) – If given, params is assumed to correspond to the
unconditional weights [image: \theta] (which does not include, for
instance, task embeddings) of the hypernetwork. In this case, the
diagonal Fisher entries belong to weights of the hypernetwork. The
Fisher will then be computed based on the probability
[image: p(y \mid x, \text{task_id})], where task_id is just a
constant input (representing the corresponding conditional weights,
e.g., task embedding) in addition to the training samples [image: x].

	empirical_fisher – If True, we compute the Fisher based on training
targets.

	online – If True, then we use online EWC, hence, there is only one
diagonal Fisher approximation and one target parameter value stored
at the time, rather than for all previous tasks.

	gamma – The gamma parameter for online EWC, controlling the gradual decay
of previous tasks.

	n_max (optional) – If not -1, this will be the maximum amount of
samples considered for estimating the Fisher.

	regression – Whether the task at hand is a classification or regression
task. If True, a regression task is assumed. For simplicity, we
assume the following probabilistic model
[image: p(y \mid x) = \mathcal{N}\big(f(x), I\big)] with [image: I]
being the identity matrix. In this case, the only term of the log
probability that influence the gradient is the MSE:
[image: \log p(y \mid x) = \lVert f(x) - y \rVert^2 + \text{const}]

	time_series (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the output of the main network
mnet is expected to be a time series. In particular, we
assume that the output is a tensor of shape [S, N, F],
where S is the length of the time series, N is the batch
size and F is the size of each feature vector (e.g., in
classification, F would be the number of classes).

Let [image: \mathbf{y} = (\mathbf{y}_1, \dots \mathbf{y}_S)] be the
output of the main network. We denote the parameters params by
[image: \theta] and the input by [image: \mathbf{x}] (which we do not
consider as random). We use the following decomposition of the
likelihood

[image: p(\mathbf{y} \mid \theta; \mathbf{x}) = \prod_{i=1}^S p(\mathbf{y}_i \mid \mathbf{y}_1, \dots, \mathbf{y}_{i-1}, \theta; \mathbf{x}_i)]

Classification: If
[image: f(\mathbf{x}_i, \mathbf{h}_{i-1}, \theta)] denotes the output
of the main network mnet for timestep [image: i] (assuming
[image: \mathbf{h}_{i-1}] is the most recent hidden state), we assume

[image: p(\mathbf{y}_i \mid \mathbf{y}_1, \dots, \mathbf{y}_{i-1}, \theta; \mathbf{x}_i) \equiv \text{softmax} \big(f(\mathbf{x}_i, \mathbf{h}_{i-1}, \theta) \big)]

Hence, we assume that we can write the negative log-likelihood (NLL)
as follows given a label [image: t \in [1, \dots, F]^S]:

[image: \text{NLL} &= - \log p(Y = t \mid \theta; \mathbf{x}) \\ &= \sum_{i=1}^S - \text{softmax} \big(f(\mathbf{x}_i, \mathbf{h}_{i-1}, \theta)_{t_i} \big) \\ &= \sum_{i=1}^S \text{cross_entropy} \big(f(\mathbf{x}_i, \mathbf{h}_{i-1}, \theta), t_i \big)]

Thus, we simply sum the cross-entropy losses per time-step to
estimate the NLL, which we then backpropagate through in order to
compute the diagonal Fisher elements.

	allowed_outputs (optional) – A list of indices, indicating which output
neurons of the main network should be taken into account when
computing the log probability. If not specified, all output neurons
are considered.

	custom_forward (optional) – A function handle that can replace the
default procedure of forwarding samples through the given
network(s).

The default forward procedure if hnet is None is

Y = mnet.forward(X, weights=params)

Otherwise, the default forward procedure is

weights = hnet.forward(task_id, theta=params)
Y = mnet.forward(X, weights=weights)

	The signature of this function should be as follows.
	
	hnet is None: @fun(mnet, params, X)

	hnet is not None:
@fun(mnet, hnet, task_id, params, X)

where X denotes the input batch to the main network (usually
consisting of a single sample).

Example

Imagine a situation where the main network uses context-
dependent modulation (cmp.
utils.context_mod_layer.ContextModLayer) and the
parameters of these context-mod layers are produced by the
hypernetwork hnet, whereas the remaining weights of the
main network mnet are maintained internally and passed as
argument params to this method.

In particular, we look at a main network that is an instance
of class mnets.mlp.MLP. The forward pass through this
combination of networks should be handled as follows in order
to compute the correct fisher matrix:

def custom_forward(mnet, hnet, task_id, params, X):
 mod_weights = hnet.forward(task_id)
 weights = {
 'mod_weights': mod_weights,
 'internal_weights': params
 }
 Y = mnet.forward(X, weights=weights)
 return Y

	custom_nll (optional) – A function handle that can replace the default
procedure of computing the negative-log-likelihood (NLL), which is
required to compute the Fisher.

	The signature of this function should be as follows:
	@fun(Y, T, data, allowed_outputs, empirical_fisher)

where Y are the outputs of the main network. Note,
allowed_outputs have already been applied to Y, if given.
T is the target provided by the dataset data, transformed as
follows:

T = data.output_to_torch_tensor(batch[1], device,
 mode='inference')

The arguments data, allowed_outputs and empirical_fisher
are only passed for convinience (e.g., to apply simple sanity checks
using assertions).

The output of the function handle should be the NLL for the given
sample.

	pass_ids (bool [https://docs.python.org/3/library/functions.html#bool]) – If a custom_nll is used and this flag is True,
then the signature of the cutom_nll is expected to be:

@fun(Y, T, data, allowed_outputs, empirical_fisher, batch_ids)

where batch_ids are the unique identifiers as returned by
option return_ids of method
data.dataset.Dataset.next_train_batch() corresponding to the
provided samples.

Example

In sequential datasets, target sequences T might be padded
to the same length. Though, if the unpadded length should be
used for NLL computation, then the custom_nll function needs
the ability to request this information (sequence length) from
data.

Also, the signatures of custom_forward are expected to be
different.

The signature of this function should be as follows.

	hnet is None: @fun(mnet, params, X, data, batch_ids)

	hnet is not None:
@fun(mnet, hnet, task_id, params, X, data, batch_ids)

	proper_scaling (bool [https://docs.python.org/3/library/functions.html#bool]) – The algorithm Online EWC is based on a Taylor
approximation of the posterior that leads to the following
estimate

[image: \log p(\theta \mid \mathcal{D}_1, \cdots, \mathcal{D}_T) \approx \log p(\mathcal{D}_T \mid \theta) - \frac{1}{2}\sum_i \bigg(\sum_{t < T} N_t \mathcal{F}_{emp \hspace{1mm}t, i} + \frac{1}{\sigma_{prior}^2} \bigg) (\theta_i - \theta_{S, i}^*)^2 + \text{const}]

Due to the presentation of the algorithm in the paper and inspired
by multiple publicly implementations, we approximate the
regularization strength in practice via

[image: \sum_{t < T} N_t \mathcal{F}_{emp \hspace{1mm}t, i} + \frac{1}{\sigma_{prior}^2} \approx \lambda \sum_{t < T} \mathcal{F}_{emp \hspace{1mm}t, i}]

where [image: \lambda] is a hyperparameter.

If this argument is True, then the sum of Fisher matrices is
properly weighted by the dataset size (independent of argument
n_max).

	prior_strength (float [https://docs.python.org/3/library/functions.html#float] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Either a scalar or a list of
Tensors with the same shapes as params. Only applies to
Online EWC. One can specify an offset for all Fisher values, e.g.,
[image: \frac{1}{\sigma_{prior}^2}]. See argument proper_scaling
for details.

	regression_lvar (float [https://docs.python.org/3/library/functions.html#float]) – In regression, this refers to the variance of
the likelihood.

	target_manipulator (func, optional) – A function with signature

T = target_manipulator(T)

That may manipulate the targets coming from the dataset.

	
hypnettorch.utils.ewc_regularizer.context_mod_forward(mod_weights=None)

	Create a custom forward function for function compute_fisher().

See argument custom_forward of function compute_fisher() for more
details.

This is a helper method to quickly retrieve a function handle that manages
the forward pass for a context-modulated main network.

We assume that the interface of the main network is similar to the one of
mnets.mlp.MLP.forward().

	Parameters:

	mod_weights (optional) – If provided, it is assumed that
compute_fisher() is called with hnet set to None.
Hence, the returned function handle will have the given
context-modulation pattern hard-coded.
If left unspecified, it is assumed that a hnet is passed to
compute_fisher() and that this hnet computes only the
parameters of all context-mod layers.

	Returns:

	A function handle.

	
hypnettorch.utils.ewc_regularizer.ewc_regularizer(task_id, params, mnet, hnet=None, online=False, gamma=1.0)

	Compute the EWC regularizer, that can be added to the remaining loss.
Note, the hyperparameter, that trades-off the regularization strength is
not yet multiplied by the loss.

This loss assumes an appropriate use of the method “compute_fisher”. Note,
for the current task “compute_fisher” has to be called after calling this
method.

If online is False, this method implements the loss proposed in eq. (3) in
[EWC2017], except for the missing hyperparameter lambda.

The online EWC implementation follows eq. (8) from [OnEWC2018] (note, that
lambda does not appear in this equation, but it was used in their
experiments).

[EWC2017]
https://arxiv.org/abs/1612.00796

[OnEWC2018]
https://arxiv.org/abs/1805.06370

	Parameters:

	(....) – See docstring of method compute_fisher().

	Returns:

	EWC regularizer.

Helper functions for training Generative Adversarial Networks

A collection of helper functions that are useful and general for GAN training,
e.g., several GAN losses.

	
hypnettorch.utils.gan_helpers.accuracy(logit_real, logit_fake, loss_choice)

	The accuracy of the discriminator.

It is computed based on the assumption that values greater than a threshold
are classified as real.

Note, the accuracy measure is only well defined for the Vanilla GAN.
Though, we just look at generally preferred value ranges and generalize
the concept of accuracy to the other GAN formulations using the
following thresholds:

	0.5 for Vanilla GAN and Traditional LSGAN

	0 for Pearson Chi^2 LSGAN and WGAN.

	Parameters:

	(....) – See docstring of function dis_loss().

	Returns:

	The relative accuracy of the discriminator.

	
hypnettorch.utils.gan_helpers.concat_mean_stats(inputs)

	Add mean statistics to discriminator input.

GANs often run into mode collapse since the discriminator sees every
sample in isolation. I.e., it cannot detect whether all samples in a batch
do look alike.

A simple way to allow the discriminator to have access to batch statistics
is to simply concatenate the mean (across batch dimension) of all
discriminator samples to each sample.

	Parameters:

	inputs – The input batch to the discriminator.

	Returns:

	The modified input batch.

	
hypnettorch.utils.gan_helpers.dis_loss(logit_real, logit_fake, loss_choice)

	Compute the loss for the discriminator.

Note, only the discriminator weights should be updated using this loss.

	Parameters:

	
	logit_real – Outputs of the discriminator after seeing real samples.

Note

We assume a linear output layer.

	logit_fake – Outputs of the discriminator after seeing fake samples.

Note

We assume a linear output layer.

	loss_choice (int [https://docs.python.org/3/library/functions.html#int]) – Define what loss function is used to train the GAN.
Note, the choice of loss function also influences how the output
of the discriminator network if reinterpreted or squashed (either
between [0,1] or an arbitrary real number).

The following choices are available.

	0: Vanilla GAN (Goodfellow et al., 2014). Non-saturating
loss version. Note, we additionally apply one-sided label
smoothing for this loss.

	1: Traditional LSGAN (Mao et al., 2018). See eq. 14 of
the paper. This loss corresponds to a parameter
choice [image: a=0], [image: b=1] and [image: c=1].

	2: Pearson Chi^2 LSGAN (Mao et al., 2018). See eq. 13.
Parameter choice: [image: a=-1], [image: b=1] and [image: c=0].

	3: Wasserstein GAN (Arjovski et al., 2017).

	Returns:

	The discriminator loss.

	
hypnettorch.utils.gan_helpers.gen_loss(logit_fake, loss_choice)

	Compute the loss for the generator.

	Parameters:

	(....) – See docstring of function dis_loss().

	Returns:

	The generator loss.

Hamiltonian-Monte-Carlo

The module utils.hmc implements the Hamiltonian-Monte-Carlo (HMC)
algorithm as described in

Neal, MCMC using Hamiltonian dynamics [https://arxiv.org/abs/1206.1901],
2012.

The pseudocode of the algorithm is described in Figure 2 of the paper. The
algorithm uses the Leapfrog algorithm to simulate the Hamiltonian dynamics in
discrete time. Therefore, two crucial hyperparameters are required: the stepsize
[image: \epsilon] and the number of steps [image: L]. Both hyperparameters have to
be chosen with care and can drastically influence the behavior of HMC. If the
stepsize [image: \epsilon] is too small, we don’t explore the state space
efficiently and waste computation. If it is too big, the numerical error from
the discretization might be come too huge and the acceptance rate rather low. In
addition, we want to choose [image: L] large enough to obtain good exploration,
but if we set it too large we might loop back to the starting position.

The No-U-Turn-Sampler (NUTS) has been proposed to set [image: L] automatically,
such that only the stepsize [image: \epsilon] has to be chosen.

Hoffman et al.,
“The No-U-Turn Sampler: [https://arxiv.org/abs/1111.4246]
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo”, 2011.

This module provides implementations for both variants, basic HMC and
NUTS. Multiple parallel chains can be simulated via class
MultiChainHMC. For Bayesian Neural Networks, the helper function
nn_pot_energy() can be used to define the potential energy.

Notation

We largely follow the notation from
Neal et al. [https://arxiv.org/abs/1206.1901]. The variable of interest,
e.g., model parameters, are encoded by the position vector [image: q]. In
addition, HMC requires a momentum [image: p]. The Hamiltonian [image: H(q, p)]
consists of two terms, the potential energy [image: U(q)] and the kinetic energy
[image: K(p) = p^T M^{-1} p / 2] with [image: M] being a symmetric, p.d. “mass”
matrix.

The Hamiltonian dynamics can thus be summarized as

[image: \frac{dq_i}{dt} &= \frac{\partial H}{\partial p_i} = [M^{-1} p]_i \\ \frac{dp_i}{dt} &= -\frac{\partial H}{\partial q_i} = \ - \frac{\partial U}{\partial q_i}]

The Leapfrog algorithm is a way to discretize the differential equation above
in a way that is reversible and volumne preserving. The algorithm has two
hyperparameters: the stepsize [image: \epsilon] and the number of steps
[image: L]. Below, we sketch the algorithm to update momentum and position from
time [image: t] to time [image: t + L\epsilon].

[image: p_i(t + \frac{\epsilon}{2}) &= p_i(t) - \frac{\epsilon}{2} \ \frac{\partial U}{\partial q_i} \big(q(t) \big) \\ q_i(t + l\epsilon) &= q_i(t + (l-1)\epsilon) + \epsilon \ \frac{p_i(t + (l-1)\epsilon + \epsilon/2)}{m_i} \quad \forall l = 1..L\\ p_i(t + l\epsilon + \frac{\epsilon}{2}) &= \ p_i(t + (l-1)\epsilon + \frac{\epsilon}{2}) - \epsilon \ \frac{\partial U}{\partial q_i} \big(q(t+l\epsilon) \big) \ \quad \forall l = 1..L-1\\ p_i(t + L\epsilon) &= p_i(t + (L-1)\epsilon + \frac{\epsilon}{2}) -\ \frac{\epsilon}{2} \frac{\partial U}{\partial q_i} \ \big(q(t+L\epsilon) \big)]

We assume a diagonal mass matrix in the position update above.

	hypnettorch.utils.hmc.HMC(initial_position, ...)

	This class represents the basic HMC algorithm.

	hypnettorch.utils.hmc.MCMC(initial_position, ...)

	Implementation of the Metropolis-Hastings algorithm.

	hypnettorch.utils.hmc.MultiChainHMC(...[, ...])

	Wrapper for running multiple HMC chains in parallel.

	hypnettorch.utils.hmc.NUTS(initial_position, ...)

	HMC with No U-Turn Sampler (NUTS).

	hypnettorch.utils.hmc.leapfrog(position, ...)

	Implementation of the leapfrog algorithm.

	hypnettorch.utils.hmc.log_prob_standard_normal_prior(...)

	Log-probability density of a standard normal prior.

	hypnettorch.utils.hmc.nn_pot_energy(net, ...)

	The potential energy for Bayesian inference with HMC using neural networks.

	
class hypnettorch.utils.hmc.HMC(initial_position, pot_energy_func, stepsize=0.02, num_steps=1, inv_mass=1.0, logger=None, log_interval=100, writer=None, writer_tag='')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class represents the basic HMC algorithm.

The algorithm is implemented as outlined in Fig. 2 of
Neal et al. [https://arxiv.org/abs/1206.1901].

The potential energy should be the negative log probability density of the
target distribution to sample from (up to a constant)
[image: U(q) = - \log p(q) + \text{const.}].

	Parameters:

	
	initial_position (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The initial position [image: q(0)].

Note

The position variable should be provided as vector. The weights
of a neural network can be flattend via
mnets.mnet_interface.MainNetInterface.flatten_params().

	pot_energy_func (func) – A function handle computing the potential
energy [image: U(q)] upon receiving a position [image: q]. To sample
the weights of a neural network, the helper function
nn_pot_energy() can be used. To sample via HMC from a target
distribution implemented via
torch.distributions.distribution.Distribution [https://pytorch.org/docs/master/distributions.html#torch.distributions.distribution.Distribution], one can
define a function handle as in the following example.

Example

d = MultivariateNormal(torch.zeros(4), torch.eye(4))
pot_energy_func = lambda q : - d.log_prob(q)

	stepsize (float [https://docs.python.org/3/library/functions.html#float]) – The stepsize [image: \epsilon] of the leapfrog()
algorithm.

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps [image: L] in the leapfrog()
algorithm.

	inv_mass (float [https://docs.python.org/3/library/functions.html#float] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The inverse “mass” matrix as required
for the computation of the kinetic energy [image: K(p)]. See argument
inv_mass of function leapfrog() for details.

	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger], optional) – If provided, the progress will be
logged.

	log_interval (int [https://docs.python.org/3/library/functions.html#int]) – After how many states the status should be logged.

	writer (tensorboardX.SummaryWriter, optional) – A tensorboard writer.
If given, useful simulation data will be logged, like the
developement of the Hamiltonian.

	writer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Will be added to the tensorboard tags.

	
property acceptance_probability

	The fraction of states that have been accepted.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
clear_position_trajectory(n=None)

	Reset attribute position_trajectory.

This method will no affect the counter num_states.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If provided, only the first n elements of
position_trajectory are discarded (e.g., the burn-in
samples).

	
property current_position

	The latest position [image: q(t)] in the chain simulated so far.

	Type:

	torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]

	
property num_states

	The number of states in the chain visited so far.

The counter will be increased by method simulate_chain().

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property num_steps

	The number of steps [image: L] in the leapfrog() algorithm.

You may adapt the number of steps at any point.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property position_trajectory

	A list containing all position variables (Markov states) visited so
far.

New positions will be added by the method simulate_chain(). To
decrease the memory footprint of objects in this class, the trajectory
can be cleared via method clear_position_trajectory().

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
simulate_chain(n)

	Simulate the next n states of the chain.

The new states will be appended to attribute
position_trajectory.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of HMC steps to be executed.

	
property stepsize

	The stepsize [image: \epsilon] of the leapfrog() algorithm.

You may adapt the stepsize at any point.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class hypnettorch.utils.hmc.MCMC(initial_position, pot_energy_func, proposal_std=1.0, logger=None, log_interval=100, writer=None, writer_tag='')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Implementation of the Metropolis-Hastings algorithm.

This class implements the basic Metropolis-Hastings algorithm as, for
instance, outlined here [https://arxiv.org/abs/1504.01896] (see alg. 1).

The Metropolis-Hastings algorithm is a simple MCMC algorithm. In contrast
to HMC, sampling is slow as positions follow a random walk.
However, the algorithm does not need access to gradient information, which
makes it applicable to a wider range of applications.

We use a normal distribution [image: \mathcal{N}(p, \sigma^2 I)] as proposal,
where [image: p] denotes the previous position (sample point). Thus, the
proposal is symmetric, and cancels in the MH steps.

The potential energy is expected to be passed as negative log-probability
(up to a constant), such that

[image: \frac{\pi(\tilde{p}_t)}{\pi(p_{t-1})} \propto \ \exp \big\{ U(p_{t-1}) - U(\tilde{p}_t) \big\}]

	Parameters:

	
	(....) – See docstring of class HMC.

	proposal_std (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation [image: \sigma] of the
proposal distribution [image: \tilde{p}_t \sim q(p \mid p_{t-1})].

	
property acceptance_probability

	The fraction of states that have been accepted.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
clear_position_trajectory(n=None)

	Reset attribute position_trajectory.

This method will no affect the counter num_states.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If provided, only the first n elements of
position_trajectory are discarded (e.g., the burn-in
samples).

	
property current_position

	The latest position [image: q(t)] in the chain simulated so far.

	Type:

	torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]

	
property num_states

	The number of states in the chain visited so far.

The counter will be increased by method simulate_chain().

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property position_trajectory

	A list containing all position variables (Markov states) visited so
far.

New positions will be added by the method simulate_chain(). To
decrease the memory footprint of objects in this class, the trajectory
can be cleared via method clear_position_trajectory().

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property proposal_std

	The std [image: \sigma] of the proposal distribution.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
simulate_chain(n)

	Simulate the next n states of the chain.

The new states will be appended to attribute
position_trajectory.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of MCMC steps to be executed.

	
class hypnettorch.utils.hmc.MultiChainHMC(initial_positions, pot_energy_func, chain_type='hmc', **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper for running multiple HMC chains in parallel.

Samples obtained via an MCMC sampler are highly auto-correlated for two
reasons: (1) the proposal distribution is conditioned on the previous state
and (2) because of rejection (consecutive states are identical). In
addition, it is unclear when the chain is long enough such that sufficient
exploration has been taking place and the sample (excluding initial burn-in)
can be considered an i.i.d. sample from the target distribution. For this
reason, it is recommended to obtain an MCMC sample by running multiple
chains in parrallel, starting from varying initial postitions [image: q(0)].

This class provides a simple wrapper to instantiate multiple chains from
HMC (and its subclasses) and provides an interface to easily
simulate those chains.

	Parameters:

	
	initial_positions (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A list of initial positions. The
length of this list will determine the number of chains to be
instantiated. Each element is an initial position as described for
argument initial_position of class HMC.

	pot_energy_func (func) – See docstring of class HMC. One may
also provide a list of functions. For instance, if the potential
energy of a Bayesian neural network should be computed, there might
be a runtime speedup if each function uses separate model instance.

	chain_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The of HMC algorithm to be used. The following options
are available:

	'hmc': Each chain will be an instance of class HMC.

	'nuts': Each chain will be an instance of class NUTS.

	**kwargs – Keyword arguments that will be passed to the constructor when
instantiating each chain. The following particularities should be
noted.

	If a writer object is passed, then a chain-specific identifier
is added to the corresponding writer_tag, except if writer
is a string. In this case, we assume writer corresponds to an
output directory and we construct a separate object of class
tensorboardX.SummaryWriter per chain. In the latter case,
the scalars logged across chains are all shown within the same
tensorboard plot and are therefore easier comparable.

	If a logger object is passed, then it will only be provided
to the first chain. If a logger should be passed to multiple
chain instances, then a list of objects from class
logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] is required. If entries in this list are
None, then a simple console logger is generated for these
entries that displays the chain’s identity when logging a message.

	
property avg_acceptance_probability

	The average fraction of states that have been accepted across all
chains.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property chains

	The list of internally managed HMC objects.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property num_chains

	The number of chains managed by this instance.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
simulate_chains(num_states, num_chains=-1, num_parallel=1)

	Simulate the chains to gather a certain number of new positions.

This method simulates the internal chains to add num_states
positions to each considered chain.

	Parameters:

	
	num_states (int [https://docs.python.org/3/library/functions.html#int]) – Each considered chain will be simulated for
this amount of HMC steps (see argument n of method
[image: HMC.simulate_chain]).

	num_chains (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The number of chains to be considered. If
-1, then all chains will be simulated for num_states
steps. Otherwise, the num_chains chains with the lowest
number of states so far (according to attribute
HMC.num_states) is simulated. Alternatively, one may
specify a list of chain indices (numbers between 0 and
num_chains).

	num_parallel (int [https://docs.python.org/3/library/functions.html#int]) – How many chains should be simulated in parallel.
If 1, the chains are simulated consecutively (one after
another).

	
class hypnettorch.utils.hmc.NUTS(initial_position, pot_energy_func, stepsize=0.02, delta_max=1000.0, inv_mass=1.0, logger=None, log_interval=100, writer=None, writer_tag='')

	Bases: HMC

HMC with No U-Turn Sampler (NUTS).

In this class, we implement the efficient version of the NUTS algorithm
(see algorithm 3 in Hoffman et al. [https://arxiv.org/abs/1111.4246]).

NUTS eliminates the need to choose the number of Leapfrog steps [image: L].
While the algorithm is more computationally expensive than basic HMC, the
reduced hyperparameter effort has been shown to reduce the overall
computational cost (and it requires less human intervention).

As explained in the paper, a good heuristic to set [image: L] is to choose
the highest number (for given [image: \epsilon]) before the trajectory loops
back to the initial position [image: q_0], e.g., when the following quantity
becomes negative

[image: \frac{d}{dt} \frac{1}{2} \lVert q - q_0 \rVert_2^2 = \ \langle q- q_0, p \rangle]

Note, this equation assumes the mass matrix is the identity: [image: M=I].

However, this approach is in general not time reversible, therefore NUTS
proposes a recursive agorithm that allows backtracing. NUTS randomly adds
subtrees to a balanced binary tree and stops when any of those subtrees
starts making a “U-turn” (either forward or backward in time). This tree
construction is fully symmetric and therefore reversible.

Note

The NUTS paper also proposes to combine a heuristic approach to adapt
the stepsize [image: \epsilon] together with [image: L] (e.g., see
algorithm 6 in Hoffman et al. [https://arxiv.org/abs/1111.4246]).

Such stepsize adaptation is currently not implemented by this class!

	Parameters:

	
	(....) – See docstring of class HMC.

	delta_max (float [https://docs.python.org/3/library/functions.html#float]) – The nonnegative criterion [image: \Delta_\text{max}]
from Eq. 8 of Hoffman et al. [https://arxiv.org/abs/1111.4246],
that should ensure that we stop NUTS if the energy becomes too big.

	
property num_steps

	The attribute HMC.num_steps does not exist for class
NUTS! Accessing this attribute will cause an error.

	
simulate_chain(n)

	Simulate the next n states of the chain.

The new states will be appended to attribute
position_trajectory.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of HMC steps to be executed.

	
hypnettorch.utils.hmc.leapfrog(position, momentum, stepsize, num_steps, inv_mass, pot_energy)

	Implementation of the leapfrog algorithm.

The leapfrog algorithm updates position [image: q] and momentum [image: p]
variables by simulating the Hamiltonian dynamics in discrete time for a
time window of size [image: L\epsilon], where [image: L] is the number of
leapfrog steps num_steps and [image: \epsilon] is the stepsize.

In general, one can call this method [image: L] times while setting
num_steps=1 in order to obtain the complete trajectory. However, if not
necessary, we recommend setting num_steps=L to save the unnecessary
computation of intermediate momentum variables.

	Parameters:

	
	position (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The position variable [image: q].

	momentum (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The momentum variable [image: p].

	stepsize (float [https://docs.python.org/3/library/functions.html#float]) – The leapfrog stepsize [image: \epsilon].

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – The number of leapfrog steps [image: L].

	inv_mass (float [https://docs.python.org/3/library/functions.html#float] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The inverse mass matrix
[image: M^{-1}]. Can also be provided as vector, in case of a
diagonal mass matrix, or as scalar.

	pot_energy (func) – A function handle that computes the potential energy
[image: U\big(q(t) \big)], receiving as only input the current
position variable.

Note

The function handle pot_energy has to be amenable to
torch.autograd [https://pytorch.org/docs/master/torch.html#module-torch.autograd], as the momentum update requires the
partial derivatives of the potential energy.

	Returns:

	Tuple containing:

	position (torch.Tensor): The updated position variable.

	momentum (torch.Tensor): The updated momentum variable.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
hypnettorch.utils.hmc.log_prob_standard_normal_prior(position, mean=0.0, std=1.0)

	Log-probability density of a standard normal prior.

This function can be used to compute [image: \log p(q)] for
[image: p(q) = \mathcal{N}(q; \bm{\mu}, I \bm{\sigma}^2)], where [image: I]
denotes the identity matrix.

This function can be passed to nn_pot_energy() as argument
prior_log_prob_func using, for instance:

lp_func = lambda q: log_prob_standard_normal_prior(q, mean=0., std=.02)

	Parameters:

	
	position (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The position variable [image: q].

	mean (float [https://docs.python.org/3/library/functions.html#float] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The mean of the diagonal Gaussian prior.

	std (float [https://docs.python.org/3/library/functions.html#float] or torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – The diagonal covariance of the Gaussian
prior.

	
hypnettorch.utils.hmc.nn_pot_energy(net, inputs, targets, prior_log_prob_func, tau_pred=1.0, nll_type='regression')

	The potential energy for Bayesian inference with HMC using neural
networks.

When obtaining samples from the posterior parameter distribution of a neural
network via HMC, a potential energy function has to be specified that allows
evaluating the negative log-posterior up to a constant. We consider a neural
network with parameters [image: W] which encodes a likelihood function
[image: p(y \mid W; x)] for an input [image: x]. In addition, a prior
[image: p(W)] needs to be specified. Given a dataset [image: \mathcal{D}]
consisting of inputs [image: x_n] and targets [image: y_n], we can
specify the potential energy as (note, here [image: q = W])

[image: U(W) &= - \log p(\mathcal{D} \mid W) - \log p(W) \\ &= - \sum_n \log p(y_n \mid W; x_n) - \log p(W)]

where the first term corresponds to the negative log-likelihood (NLL). The
precise way of computing the NLL depends on which kind of likelihood
interpretation is forced onto the network (cf. argument nll_type).

	Parameters:

	
	net (mnets.mnet_interface.MainNetInterface) – The considered neural
network, whose parameters are [image: W].

	inputs (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – A tensor containing all the input sample points
[image: x_n] in [image: \mathcal{D}].

	targets (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – A tensor containing all the output sample points
[image: y_n] in [image: \mathcal{D}].

	prior_log_prob_func (func) – Function handle that allows computing the
log-probability density of the prior for a given position variate.

	tau_pred (float [https://docs.python.org/3/library/functions.html#float]) – Only applies to nll_type='regression'. The inverse
variance of the assumed Gaussian likelihood.

	nll_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of likelihood interpretation enforced on the
network. The following options are supported:

	'regression': The network outputs the mean of a 1D normal
distribution with fixed variance.

[image: \text{NLL} = \frac{1}{2 \sigma_\text{ll}^2} \ \sum_{(x, y) \in \mathcal{D}} \ \big(f_\text{M}(x, W) - y \big)^2]

where [image: f_\text{M}(x, W)] is the network output and
[image: \frac{1}{\sigma_\text{ll}^2}] corresponds to tau_pred.

	'classification': Multi-class classification with a softmax
likelihood. Note, we assume the network has linear (logit) outputs

[image: \text{NLL} = \sum_{(\mathbf{x}, y) \in \mathcal{D}} \bigg(\ \underbrace{ - \sum_{c=0}^{C-1} [c = y] \log \Big(\ \text{softmax} \big(f_\text{M}(\mathbf{x}, W) \big)_c \ }_{\text{cross-entropy loss with 1-hot targets}} \Big) \ \bigg)]

where [image: C] is the number of classes and [image: y] are
integer labels. We assume that the neural network
[image: f_\text{M}(\mathbf{x}, W)] outputs logits.

Note

We assume targets contains integer labels and not
1-hot encodings for 'classification'!

	Returns:

	A function handle as required by constructor argument
pot_energy_func of class HMC.

	Return type:

	(func)

Hypernetwork Regularization

We summarize our own regularizers in this module. These regularizer ensure that
the output of a hypernetwork don’t change.

	
hypnettorch.utils.hnet_regularizer.calc_fix_target_reg(hnet, task_id, targets=None, dTheta=None, dTembs=None, mnet=None, inds_of_out_heads=None, fisher_estimates=None, prev_theta=None, prev_task_embs=None, batch_size=None, reg_scaling=None)

	This regularizer simply restricts the output-mapping for previous
task embeddings. I.e., for all [image: j < \text{task_id}] minimize:

[image: \lVert \text{target}_j - h(c_j, \theta + \Delta\theta) \rVert^2]

where [image: c_j] is the current task embedding for task [image: j] (and we
assumed that dTheta was passed).

	Parameters:

	
	hnet – The hypernetwork whose output should be regularized; has to
implement the interface
hnets.hnet_interface.HyperNetInterface.

	task_id (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the current task (the one that is used to
compute dTheta).

	targets (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of outputs of the hypernetwork. Each list entry
must have the output shape as returned by the
hnets.hnet_interface.HyperNetInterface.forward() method of the
hnet. Note, this function doesn’t detach targets. If desired,
that should be done before calling this function.

Also see get_current_targets().

	dTheta (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The current direction of weight change for the
internal (unconditional) weights of the hypernetwork evaluated on
the task-specific loss, i.e., the weight change that would be
applied to the unconditional parameters [image: \theta]. This
regularizer aims to modify this direction, such that the hypernet
output for embeddings of previous tasks remains unaffected.
Note, this function does not detach dTheta. It is up to the
user to decide whether dTheta should be a constant vector or
might depend on parameters of the hypernet.

Also see utils.optim_step.calc_delta_theta().

	dTembs (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The current direction of weight change for the
task embeddings of all tasks that have been learned already.
See dTheta for details.

	mnet – Instance of the main network. Has to be provided if
inds_of_out_heads are specified.

	inds_of_out_heads – (list, optional): List of lists of integers, denoting
which output neurons of the main network are used for predictions of
the corresponding previous tasks.
This will ensure that only weights of output neurons involved in
solving a task are regularized.

If provided, the method
mnets.mnet_interface.MainNetInterface.get_output_weight_mask
of the main network ``mnet`() is used to determine which hypernetwork
outputs require regularization.

	fisher_estimates (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of list of tensors, containing
estimates of the Fisher Information matrix for each weight
tensor in the main network and each task.
Note, that len(fisher_estimates) == task_id.
The Fisher estimates are used as importance weights for single
weights when computing the regularizer.

	prev_theta (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If given, prev_task_embs but not
targets has to be specified. prev_theta is expected to be
the internal unconditional weights [image: theta] prior to learning
the current task. Hence, it can be used to compute the targets on
the fly (which is more memory efficient (constant memory), but more
computationally demanding).
The computed targets will be detached from the computational graph.
Independent of the current hypernet mode, the targets are computed
in eval mode.

	prev_task_embs (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If given, prev_theta but not
targets has to be specified. prev_task_embs are the task
embeddings (conditional parameters) of the hypernetwork.
See docstring of prev_theta for more details.

	batch_size (int [https://docs.python.org/3/library/functions.html#int], optional) – If specified, only a random subset of
previous tasks is regularized. If the given number is bigger than
the number of previous tasks, all previous tasks are regularized.

Note

A batch_size smaller or equal to zero will be ignored
rather than throwing an error.

	reg_scaling (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If specified, the regulariation terms for
the different tasks are scaled arcording to the entries of this
list.

	Returns:

	The value of the regularizer.

	
hypnettorch.utils.hnet_regularizer.flatten_and_remove_out_heads(mnet, weights, allowed_outputs)

	Flatten a list of target network tensors to a single vector, such that
output neurons that belong to other than the current output head are
dropped.

Note, this method assumes that the main network has a fully-connected output
layer.

	Parameters:

	
	mnet – Main network instance.

	weights – A list of weight tensors of the main network (must adhere the
corresponding weight shapes).

	allowed_outputs – List of integers, denoting which output neurons of
the fully-connected output layer belong to the current head.

	Returns:

	The flattened weights with those output weights not belonging to the
current head being removed.

	
hypnettorch.utils.hnet_regularizer.get_current_targets(task_id, hnet)

	For all [image: j < \text{task_id}], compute the output of the
hypernetwork. This output will be detached from the graph before being added
to the return list of this function.

Note, if these targets don’t change during training, it would be more memory
efficient to store the weights [image: \theta^*] of the hypernetwork (which
is a fixed amount of memory compared to the variable number of tasks).
Though, it is more computationally expensive to recompute
[image: h(c_j, \theta^*)] for all [image: j < \text{task_id}] everytime the
target is needed.

Note, this function sets the hypernet temporarily in eval mode. No gradients
are computed.

See argument targets of calc_fix_target_reg() for a use-case of
this function.

	Parameters:

	
	task_id (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the current task.

	hnet – An instance of the hypernetwork before learning a new task
(i.e., the hypernetwork has the weights [image: \theta^*] necessary
to compute the targets).

	Returns:

	An empty list, if task_id is 0. Otherwise, a list of
task_id-1 targets. These targets can be passed to the function
calc_fix_target_reg() while training on the new task.

Helper functions for weight initialization

The module utils.init_utils contains helper functions that might be
useful for initialization of weights. The functions are somewhat complementary
to what is already provided in the PyTorch module torch.nn.init.

	
hypnettorch.utils.init_utils.calc_fan_in_and_out(shapes)

	Calculate fan-in and fan-out.

Note

This function expects the shapes of an at least 2D tensor.

	Parameters:

	shapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of integers.

	Returns:

	
	fan_in

	fan_out

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) Tuple containing

	
hypnettorch.utils.init_utils.xavier_fan_in_(tensor)

	Initialize the given weight tensor with Xavier fan-in init.

Unfortunately, torch.nn.init.xavier_uniform_() [https://pytorch.org/docs/master/nn.init.html#torch.nn.init.xavier_uniform_] doesn’t give
us the choice to use fan-in init (always uses the harmonic mean).
Therefore, we provide our own implementation.

	Parameters:

	tensor (torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) – Weight tensor that will be modified
(initialized) in-place.

2D-convolutional layer without weight sharing

This module implements a biologically-plausible version of a convolutional layer
that does not use weight-sharing. Such a convnet is termed “locally-connected
network” in:

Bartunov et al., “Assessing the Scalability of Biologically-Motivated Deep
Learning Algorithms and Architectures”, NeurIPS 2018. [http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures]

	hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer(...)

	Implementation of a locally-connected 2D convolutional layer.

	
class hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer(in_channels, out_channels, in_height, in_width, kernel_size, stride=1, padding=0, bias=True, no_weights=False)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Implementation of a locally-connected 2D convolutional layer.

Since this implementation of a convolutional layer doesn’t use weight-
sharing, it will have more parameters than a conventional convolutional
layer such as torch.nn.Conv2d [https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html#torch.nn.Conv2d].

For example, consider a convolutional layer with kernel size [K, K],
C_in input channels and C_out output channels, that has an output
feature map size of [H, W]. Each receptive field [2] will have its
own weights, a parameter tensor of size K x K. Thus, in total the layer
will have C_out * C_in * H * W * K * K weights compared to
C_out * C_in * K * K weights that a conventional
torch.nn.Conv2d [https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html#torch.nn.Conv2d] would have.

Consider the [image: i]-th input feature map [image: F^{(i)}]
([image: 1 \leq i \leq C_{\text{in}}]), the [image: j]-th output feature map
[image: G^{(j)}] ([image: 1 \leq j \leq C_{\text{out}}]) and the pixel with
coordinates [image: (x,y)] in the [image: j]-th output feature map
[image: G^{(j)}_{xy}] ([image: 1 \leq x \leq W] and [image: 1 \leq y \leq H]).

We denote the filter weights of this pixel connecting to the [image: i]-th
input feature map by [image: W_{xy}^{(i,j)} \in \mathbb{R}^{K \times K}].
The corresponding receptive field inside [image: F^{(i)}] that is used to
compute pixel [image: G^{(j)}_{xy}] is denoted by
[image: \hat{F}^{(i)}(x,y) \in \mathbb{R}^{K \times K}].

The bias weights for feature map [image: G^{(j)}] are denoted by
[image: B^{(j)}], with a scalar weight [image: B^{(j)}_{xy}] for pixel
[image: (x,y)].

Using this notation, the computation of this layer can be described by the
following formula

[image: G^{(j)}_{xy} &= B^{(j)}_{xy} + \sum_{i=1}^{C_{\text{in}}} \text{sum} (W_{xy}^{(i,j)} \odot \hat{F}^{(i)}(x,y)) \\ &= B^{(j)}_{xy} + \sum_{i=1}^{C_{\text{in}}} \langle W_{xy}^{(i,j)}, \hat{F}^{(i)}(x,y) \rangle_F]

where [image: \text{sum}(\cdot)] is the unary operator that computes the sum
of all elements in a matrix, [image: \odot] denotes the Hadamard product
and [image: \langle \cdot, \cdot \rangle_F] denotes the Frobenius inner
product, which computes the sum of the entries of the Hadamard product
between real-valued matrices.

Implementation details

Let [image: N] denote the batch size. We can use the function
torch.nn.functional.unfold() [https://pytorch.org/docs/master/generated/torch.nn.functional.unfold.html#torch.nn.functional.unfold] to split our input, which is of shape
[N, C_in, H_in, W_in], into receptive fields F_hat of dimension
[N, C_in * K * K, H * W]. The receptive field [image: \hat{F}^{(i)}(x,y)]
would then correspond to F_hat[:, i * K*K:(i+1) * K*K, y*H + x],
assuming that indices now start at 0 and not at 1.

In addition, we have a weight tensor W of shape
[C_out, C_in * K * K, H * W].

Now, we can compute the element-wise product of receptive fields and their
filters by introducing a slack dimension into the shape of F_hat (i.e.,
[N, 1, C_in * K * K, H * W]) and by using broadcasting. F_hat * W
will result into a tensor of shape [N, C_out, C_in * K * K, H * W].
By summing over the third dimension dim=2 and reshaping the output we
retrieve the result of our local convolutional layer.

	Parameters:

	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels in the input image.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels produced by the convolution.

	in_height (int [https://docs.python.org/3/library/functions.html#int]) – Height of the input feature maps, assuming that input
feature maps have shape [C_in, H, W] (omitting the batch
dimension). This argument is necessary to compute the size of
output feature maps, as we need a filter for each pixel in each
output feature map.

	in_width (int [https://docs.python.org/3/library/functions.html#int]) – Width of input feature maps.

	kernel_size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the convolving kernel.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Stride of the convolution.

	padding (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Zero-padding added to both sides of
the input.

	bias (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, adds a learnable bias to the output.
There will be one scalar bias per filter.

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the layer will have no trainable
weights. Hence, weights are expected to be passed to the
forward() method.

Footnotes

[2]
For each of the C_in input feature maps, there is one receptive
field for each pixel in all C_out feature maps.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x, weights=None)

	Compute output of local convolutional layer.

	Parameters:

	
	x – The input images of shape [N, C_in, H_in, W_in], where N
denotes the batch size..

	weights – Weights that should be used instead of the internally
maintained once (determined by attribute weights). Note,
if no_weights was True in the constructor, then this
parameter is mandatory.

	Returns:

	The output feature maps of shape [N, C_out, H, W].

	
property out_height

	Height of the output feature maps.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property out_width

	Width of the output feature maps.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property param_shapes

	A list of list of integers. Each list represents the shape of a
parameter tensor. Note, this attribute is independent of the attribute
weights, it always comprises the shapes of all weight tensors as
if the network would be stand-alone (i.e., no weights being passed to
the forward() method).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property weights

	A list of all internal weights of this layer. If all weights are
assumed to be generated externally, then this attribute will be
None.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList] or None

Console/file logging

Collection of methods used to setup and maintain the logger used by this
framework.

	
hypnettorch.utils.logger_config.config_logger(name, log_file, file_level, console_level)

	Configure the logger that should be used by all modules in this
package.
This method sets up a logger, such that all messages are written to console
and to an extra logging file. Both outputs will be the same, except that
a message logged to file contains the module name, where the message comes
from.

The implementation is based on an earlier implementation of a function I
used in another project:

https://git.io/fNDZJ

	Parameters:

	
	name – The name of the created logger.

	log_file – Path of the log file. If None, no logfile will be generated.
If the logfile already exists, it will be overwritten.

	file_level – Log level for logging to log file.

	console_level – Log level for logging to console.

	Returns:

	The configured logger.

Miscellaneous Utilities

A collection of helper functions.

	
hypnettorch.utils.misc.configure_matplotlib_params(fig_size=[6.4, 4.8], two_axes=True, font_size=8, usetex=False)

	Helper function to configure default matplotlib parameters.

	Parameters:

	
	fig_size – Figure size (width, height) in inches.

	usetex (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether text.usetex should be set (leads to an
error on systems that don’t have latex installed).

	
hypnettorch.utils.misc.get_colorbrewer2_colors(family='Set2')

	Helper function that returns a list of color combinations
extracted from colorbrewer2.org.

	Parameters:

	(list) – the color family from colorbrewer2.org to use.

	
hypnettorch.utils.misc.get_default_args(func)

	Get the default values of all keyword arguments for a given function.

	Parameters:

	func – A function handle.

	Returns:

	Dictionary with keyword argument names as keys and their
default value as values.

	Return type:

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
hypnettorch.utils.misc.init_params(weights, bias=None)

	Initialize the weights and biases of a linear or (transpose) conv layer.

Note, the implementation is based on the method “reset_parameters()”,
that defines the original PyTorch initialization for a linear or
convolutional layer, resp. The implementations can be found here:

https://git.io/fhnxV

https://git.io/fhnx2

Deprecated since version 1.0: Please use function utils.torch_utils.init_params() instead.

	Parameters:

	
	weights – The weight tensor to be initialized.

	bias (optional) – The bias tensor to be initialized.

	
hypnettorch.utils.misc.list_to_str(list_arg, delim=' ')

	Convert a list of numbers into a string.

	Parameters:

	
	list_arg – List of numbers.

	delim (optional) – Delimiter between numbers.

	Returns:

	List converted to string.

	Return type:

	(str [https://docs.python.org/3/library/stdtypes.html#str])

	
hypnettorch.utils.misc.repair_canvas_and_show_fig(fig, close=True)

	If writing a figure to tensorboard via “add_figure” it might change the
canvas, such that our backend doesn’t allow to show the figure anymore.
This method will generate a new canvas and replace the old one of the
given figure.

	Parameters:

	
	fig – The figure to be shown.

	close – Whether the figure should be closed after it has been shown.

	
hypnettorch.utils.misc.str_to_act(act_str)

	Convert the name of an activation function into the actual PyTorch
activation function.

	Parameters:

	act_str – Name of activation function (as defined by command-line
arguments).

	Returns:

	Torch activation function instance or None, if linear is given.

	
hypnettorch.utils.misc.str_to_floats(str_arg)

	Helper function to convert a string which is a list of comma separated
floats into an actual list of floats.

	Parameters:

	str_arg – String containing list of comma-separated floats. For
convenience reasons, we allow the user to also pass single float
that a put into a list of length 1 by this function.

	Returns:

	List of floats.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
hypnettorch.utils.misc.str_to_ints(str_arg)

	Helper function to convert a string which is a list of comma separated
integers into an actual list of integers.

	Parameters:

	str_arg – String containing list of comma-separated ints. For convenience
reasons, we allow the user to also pass single integers that a put
into a list of length 1 by this function.

	Returns:

	List of integers.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

Compute Parameter Changes without Update Steps

PyTorch optimizers don’t provide the ability to get a lookahead of the change to
the parameters applied by the torch.optim.Optimizer.step() [https://pytorch.org/docs/master/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step] method.
Therefore, this module copies step() functions from some optimizers, but
without applying the weight change and without making changes to the internal
state of an optimizer, such that the user can get the change of parameters that
would be executed by the optimizer.

	
hypnettorch.utils.optim_step.adam_step(optimizer, detach_dp=True)

	Performs a single optimization step using the Adam optimizer. The code
has been copied from:

https://git.io/fjYP3

Note, this function does not change the inner state of the given
optimizer object.

Note, gradients are cloned and detached by default.

	Parameters:

	
	optimizer – An instance of class torch.optim.Adam [https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam].

	detach_dp – Whether gradients are detached from the computational
graph. Note, False only makes sense if
func:torch.autograd.backward was called with the argument
create_graph set to True.

	Returns:

	A list of gradient changes d_p that would be applied by this
optimizer to all parameters when calling torch.optim.Adam.step().

	
hypnettorch.utils.optim_step.calc_delta_theta(optimizer, use_sgd_change, lr=None, detach_dt=True)

	Calculate [image: \Delta\theta], i.e., the change in trainable parameters
([image: \theta]) in order to minimize the task-specific loss.

Note, one has to call torch.autograd.backward() [https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward] on a
desired loss before calling this function, otherwise there are no gradients
to compute the weight change that the optimizer would cause. Hence, this
method is called in between torch.autograd.backward() [https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward] and
torch.optim.Optimizer.step() [https://pytorch.org/docs/master/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step].

Note, by default, gradients are detached from the computational graph.

	Parameters:

	
	optimizer – The optimizer that will be used to change [image: \theta].

	use_sgd_change – If True, then we won’t calculate the actual step
done by the current optimizer, but the one that would be done by a
simple SGD optimizer.

	lr – Has to be specified if use_sgd_change is True. The
learning rate if the optimizer.

	detach_dt – Whether [image: \Delta\theta] should be detached from the
computational graph. Note, in order to backprop through
[image: \Delta\theta], you have to call
torch.autograd.backward() [https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward] with create_graph set to
True before calling this method.

	Returns:

	[image: \Delta\theta]

	
hypnettorch.utils.optim_step.rmsprop_step(optimizer, detach_dp=True)

	Performs a single optimization step using the RMSprop optimizer. The code
has been copied from:

https://git.io/fjurp

Note, this function does not change the inner state of the given
optimizer object.

Note, gradients are cloned and detached by default.

	Parameters:

	
	optimizer – An instance of class torch.optim.Adam [https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam].

	detach_dp – Whether gradients are detached from the computational
graph. Note, False only makes sense if
func:torch.autograd.backward was called with the argument
create_graph set to True.

	Returns:

	A list of gradient changes d_p that would be applied by this
optimizer to all parameters when calling
torch.optim.RMSprop.step().

	
hypnettorch.utils.optim_step.sgd_step(optimizer, detach_dp=True)

	Performs a single optimization step using the SGD optimizer. The code
has been copied from:

https://git.io/fjYit

Note, this function does not change the inner state of the given
optimizer object.

Note, gradients are cloned and detached by default.

	Parameters:

	
	optimizer – An instance of class torch.optim.SGD [https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD].

	detach_dp – Whether gradients are detached from the computational
graph. Note, False only makes sense if
func:torch.autograd.backward was called with the argument
create_graph set to True.

	Returns:

	A list of gradient changes d_p that would be applied by this
optimizer to all parameters when calling torch.optim.SGD.step().

Self-Attention Layer

This function was copied from

https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py

It was written by Cheonbok Park. Unfortunately, no license was visibly
provided with this code.

Note, that we use this code WITHOUT ANY WARRANTIES.

The code was slightly modified to fit our purposes.

	
class hypnettorch.utils.self_attention_layer.SelfAttnLayer(in_dim, use_spectral_norm)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Self-Attention Layer

This type of layer was proposed by:

Zhang et al., “Self-Attention Generative Adversarial Networks”, 2018
https://arxiv.org/abs/1805.08318

The goal is to capture global correlations in convolutional networks (such
as generators and discriminators in GANs).

Initialize self-attention layer.

	Parameters:

	
	in_dim – Number of input channels (C).

	use_spectral_norm – Enable spectral normalization for all 1x1 conv.
layers.

	
forward(x, ret_attention=False)

	Compute and apply attention map to mix global information into local
features.

	Parameters:

	
	x – Input feature maps (shape: B x C x W x H).

	ret_attention (optional) – If the attention map should be returned
as an additional return value.

	Returns:

	Tuple (if ret_attention is True) containing:

	out: gamma * (self-)attention features + input features.

	attention: Attention map, shape: B X N X N (N = W * H).

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
class hypnettorch.utils.self_attention_layer.SelfAttnLayerV2(in_dim, use_spectral_norm, no_weights=False, init_weights=None)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Self-Attention Layer with weights maintained separately. Hence, this
class should have the exact same behavior as “SelfAttnLayer” but the weights
are maintained independent of the preimplemented PyTorch modules, which
allows more flexibility (e.g., generating weights by a hypernet or modifying
weights easily).

This type of layer was proposed by:

Zhang et al., “Self-Attention Generative Adversarial Networks”, 2018
https://arxiv.org/abs/1805.08318

The goal is to capture global correlations in convolutional networks (such
as generators and discriminators in GANs).

Initialize self-attention layer.

	Parameters:

	
	in_dim – Number of input channels (C).

	use_spectral_norm – Enable spectral normalization for all 1x1 conv.
layers.

	no_weights – If set to True, no trainable parameters will be
constructed, i.e., weights are assumed to be produced ad-hoc
by a hypernetwork and passed to the forward function.

	init_weights (optional) – This option is for convinience reasons.
The option expects a list of parameter values that are used to
initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw
produced by the hypernetwork.
See attribute “weight_shapes” for the format in which parameters
should be passed.

	
forward(x, ret_attention=False, weights=None, dWeights=None)

	Compute and apply attention map to mix global information into local
features.

	Parameters:

	
	x – Input feature maps (shape: B x C x W x H).

	ret_attention (optional) – If the attention map should be returned
as an additional return value.

	weights – List of weight tensors, that are used as layer parameters.
If “no_weights” was set in the constructor, then this parameter
is mandatory.
Note, when provided, internal parameters are not used.

	dWeights – List of weight tensors, that are added to “weights” (the
internal list of parameters or the one given via the option
“weights”), when computing the output of this network.

	Returns:

	Tuple (if ret_attention is True) containing:

	out: gamma * (self-)attention features + input features.

	attention: Attention map, shape: B X N X N (N = W * H).

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property weight_shapes

	The shapes of all parameter tensors in this layer (value of
attribute is independent of whether “no_weights” was set in the
constructor).

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property weights

	A list of parameter tensors (all parameters in this layer). Will be
None if this network has no weights.

	Type:

	torch.nn.ParameterList [https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList] or None

Synaptic Intelligence

The module utils.si_regularizer implements the Synaptic Intelligence (SI)
regularizer proposed in

Zenke et al., “Continual Learning Through Synaptic Intelligence”, 2017.
https://arxiv.org/abs/1703.04200

Note

We aim to follow the suggested implementation from appendix section A.2.3 in

van de Ven et al., “Three scenarios for continual learning”, 2019.
https://arxiv.org/pdf/1904.07734.pdf

We additionally ensure that importance weights [image: \Omega] are positive.

Note

This implementation has the following memory requirements. Let [image: n]
denote the number of parameters to be regularized.

We always need to store the importance weights [image: \Omega] and the
checkpointed weights after learning the last task
[image: \theta_\text{prev}].

We also need to checkpoint the weights right before the optimizer step is
performed [image: \theta_\text{pre_step}] in order to update the running
importance estimate [image: \omega].

Hence, we keep an additional memory of [image: 4n].

	hypnettorch.utils.si_regularizer.si_pre_optim_step(...)

	Prepare SI importance estimate before running the optimizer step.

	hypnettorch.utils.si_regularizer.si_post_optim_step(...)

	Update running importance estimate [image: \omega].

	hypnettorch.utils.si_regularizer.si_compute_importance(...)

	Compute weight importance [image: \Omega] after training a task.

	hypnettorch.utils.si_regularizer.si_regularizer(...)

	Apply synaptic intelligence regularizer.

	
hypnettorch.utils.si_regularizer.si_compute_importance(net, params, params_name=None, epsilon=0.001)

	Compute weight importance [image: \Omega] after training a task.

Note

This function is assumed to be called after the training on the current
task finished. It will set the variable [image: \theta_\text{prev}] to
the current parameter value.

	Parameters:

	
	(....) – See docstring of function si_pre_optim_step().

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Damping parameter used to ensure numerical stability
when normalizing weight importance.

	
hypnettorch.utils.si_regularizer.si_post_optim_step(net, params, params_name=None, delta_params=None)

	Update running importance estimate [image: \omega].

This function is called after an optimizer update step has been performed.
It will perform an update of the internal running variable :math:omega`
using the current parameter values, the checkpointed parameter values
before the optimizer step ([image: \theta_\text{pre_step}], see function
si_pre_optim_step()) and the negative gradients accumulated in the
grad variables of the parameters.

	Parameters:

	
	(....) – See docstring of function si_pre_optim_step().

	delta_params (list [https://docs.python.org/3/library/stdtypes.html#list]) – One may pass the parameter update step directly.
In this case. the difference between the current parameter values
and the previous ones [image: \theta_\text{pre_step}] will not be
computed.

Note

One may use the functions provided in module
utils.optim_step to calculate delta_params

Note

When this option is used, it is not required to explicitly call
the optimizer its step function. Though, it is still
required that gradients are computed and accumulated in the
grad variables of the parameters in params.

Note

This option is particularly interesting if importances should
only be estimated wrt to a part of the total loss function,
e.g., the task-specific part, ignoring other parts of the loss
(e.g., regularizers).

	
hypnettorch.utils.si_regularizer.si_pre_optim_step(net, params, params_name=None, no_pre_step_ckpt=False)

	Prepare SI importance estimate before running the optimizer step.

This function has to be called before running the optimizer step in order
to checkpoint [image: \theta_\text{pre_step}].

Note

When this function is called the first time (for the first task), the
given parameters will also be checkpointed as the initial weights,
which are required to normalize importances :math:Omega` after
training.

	Parameters:

	
	net (torch.nn.Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]) – A network required to store buffers (i.e., the
running variables that SI needs to keep track of).

	params (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of parameter tensors. For each parameter tensor
in this list that requires_grad the importances will be
measured.

	params_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – In case SI should be performed for
multiple parameter groups params, one has to assign names to
each group via this option.

	no_pre_step_ckpt (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function will not
checkpoint [image: \theta_\text{pre_step}]. Instead, option
delta_params of function si_post_optim_step() is expected
to be set.

Note

One still has to call this function once before updating the
parameters of the first task for the first time.

	
hypnettorch.utils.si_regularizer.si_regularizer(net, params, params_name=None)

	Apply synaptic intelligence regularizer.

This function computes the SI regularizer. Note, a regularization strength
should be multiplied by the returned loss post-hoc, to tune the strength.

	Parameters:

	(....) – See docstring of function si_pre_optim_step().

	Returns:

	The regularizer as scalar value.

	Return type:

	(torch.Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

General helper functions for simulations

The module utils.sim_utils comprises a bunch of functions that are in
general useful for writing simulations in this repository.

	
hypnettorch.utils.sim_utils.calc_train_iter(num_train_samples, batch_size, num_iter=-1, epochs=-1)

	Calculate the number of training tierations.

If epochs is specified, this method will compute the total number of
training iterations and the number of iterations per epoch.

Otherwise, the number of training iterations is simply set to num_iter.

	Parameters:

	
	num_train_samples (int [https://docs.python.org/3/library/functions.html#int]) – Numbe rof training samples in dataset.

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Mini-batch size during training.

	num_iter (int [https://docs.python.org/3/library/functions.html#int]) – Number of training iterations. Only needs to be
specified if epochs is -1.

	epochs (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of training epochs.

	Returns:

	Tuple containing:

	num_train_iter: Total number of training iterations.

	iter_per_epoch: Number of training iterations per epoch. Is set to
-1 in case epochs is unspecified.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
hypnettorch.utils.sim_utils.get_hypernet(config, device, net_type, target_shapes, num_conds, no_cond_weights=False, no_uncond_weights=False, uncond_in_size=0, shmlp_chunk_shapes=None, shmlp_num_per_chunk=None, shmlp_assembly_fct=None, verbose=True, cprefix=None)

	Generate a hypernetwork instance.

A helper to generate the hypernetwork according to the given the user
configurations.

	Parameters:

	
	config (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – Command-line arguments.

Note

The function expects command-line arguments available according
to the function utils.cli_args.hnet_args().

	device – PyTorch device.

	net_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of network. The following options are
available:

	'hmlp'

	'chunked_hmlp'

	'structured_hmlp'

	'hdeconv'

	'chunked_hdeconv'

	target_shapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – See argument target_shapes of
hnets.mlp_hnet.HMLP.

	num_conds (int [https://docs.python.org/3/library/functions.html#int]) – Number of conditions that should be known to the
hypernetwork.

	no_cond_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – See argument no_cond_weights of
hnets.mlp_hnet.HMLP.

	no_uncond_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – See argument no_uncond_weights of
hnets.mlp_hnet.HMLP.

	uncond_in_size (int [https://docs.python.org/3/library/functions.html#int]) – See argument uncond_in_size of
hnets.mlp_hnet.HMLP.

	shmlp_chunk_shapes (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Argument chunk_shapes of
hnets.structured_mlp_hnet.StructuredHMLP.

	shmlp_num_per_chunk (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Argument num_per_chunk of
hnets.structured_mlp_hnet.StructuredHMLP.

	shmlp_assembly_fct (func, optional) – Argument assembly_fct of
hnets.structured_mlp_hnet.StructuredHMLP.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Argument verbose of hnets.mlp_hnet.HMLP.

	cprefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A prefix of the config names. It might be, that
the config names used in this function are prefixed, since several
hypernetworks should be generated.

Also see docstring of parameter prefix in function
utils.cli_args.hnet_args().

	
hypnettorch.utils.sim_utils.get_mnet_model(config, net_type, in_shape, out_shape, device, cprefix=None, no_weights=False, **mnet_kwargs)

	Generate a main network instance.

A helper to generate a main network according to the given the user
configurations.

Note

Generation of networks with context-modulation is not yet supported,
since there is no global argument set in utils.cli_args yet.

	Parameters:

	
	config (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – Command-line arguments.

Note

The function expects command-line arguments available according
to the function utils.cli_args.main_net_args().

	net_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of network. The following options are
available:

	mlp: mnets.mlp.MLP

	resnet: mnets.resnet.ResNet

	wrn: mnets.wide_resnet.WRN

	iresnet: mnets.resnet_imgnet.ResNetIN

	zenke: mnets.zenkenet.ZenkeNet

	bio_conv_net: mnets.bio_conv_net.BioConvNet

	chunked_mlp: mnets.chunk_squeezer.ChunkSqueezer

	simple_rnn: mnets.simple_rnn.SimpleRNN

	in_shape (list [https://docs.python.org/3/library/stdtypes.html#list]) – Shape of network inputs. Can be None if not
required by network type.

For instance: For an MLP network mnets.mlp.MLP with 100
input neurons it should be in_shape=[100].

	out_shape (list [https://docs.python.org/3/library/stdtypes.html#list]) – Shape of network outputs. See in_shape for more
details.

	device – PyTorch device.

	cprefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A prefix of the config names. It might be, that
the config names used in this method are prefixed, since several
main networks should be generated (e.g., cprefix='gen_' or
'dis_' when training a GAN).

Also see docstring of parameter prefix in function
utils.cli_args.main_net_args().

	no_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the main network should be generated without
weights.

	**mnet_kwargs – Additional keyword arguments that will be passed to the
main network constructor.

	Returns:

	The created main network model.

	
hypnettorch.utils.sim_utils.setup_environment(config, logger_name='hnet_sim_logger')

	Setup the general environment for training.

This function should be called at the beginning of a simulation script
(right after the command-line arguments have been parsed). The setup will
incorporate:

	creating the output folder

	initializing logger

	making computation deterministic (depending on config)

	selecting the torch device

	creating the Tensorboard writer

	Parameters:

	
	config (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – Command-line arguments.

Note

The function expects command-line arguments available according
to the function utils.cli_args.miscellaneous_args().

	logger_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the logger to be created (time stamp will be
appended to this name).

	Returns:

	Tuple containing:

	device: Torch device to be used.

	writer: Tensorboard writer. Note, you still have to close the
writer manually!

	logger: Console (and file) logger.

	Return type:

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

Checkpointing PyTorch Models

This module provides functions to handle PyTorch checkpoints with a similar
convenience as one might be used to in Tensorflow.

	hypnettorch.utils.torch_ckpts.get_best_ckpt_path(...)

	Returns the path to the checkpoint with the highest score.

	hypnettorch.utils.torch_ckpts.load_checkpoint(...)

	Load a checkpoint from file.

	hypnettorch.utils.torch_ckpts.make_ckpt_list(...)

	Creates a file that lists all checkpoints together with there scores, such that one can easily find the checkpoint associated with the maximum score.

	hypnettorch.utils.torch_ckpts.save_checkpoint(...)

	Save checkpoint to file.

	
hypnettorch.utils.torch_ckpts.get_best_ckpt_path(file_path)

	Returns the path to the checkpoint with the highest score.

	Parameters:

	file_path – See method save_checkpoints().

	
hypnettorch.utils.torch_ckpts.load_checkpoint(ckpt_path, net, device=None, ret_performance_score=False)

	Load a checkpoint from file.

	Parameters:

	
	ckpt_path – Path to checkpoint.

	net – The network, that should load the state dict saved in this
checkpoint.

	device (optional) – The device currently used by the model. Can help to
speed up loading the checkpoint.

	ret_performance_score – If True, the score associated with this
checkpoint will be returned as well. See argument
“performance_score” of method “save_ckecpoint”.

	Returns:

	The loaded checkpoint. Note, the state_dict is already applied to the
network. However, there might be other important dict elements.

	
hypnettorch.utils.torch_ckpts.make_ckpt_list(file_path)

	Creates a file that lists all checkpoints together with there scores,
such that one can easily find the checkpoint associated with the maximum
score.

	Parameters:

	file_path – See method save_checkpoints().

	
hypnettorch.utils.torch_ckpts.save_checkpoint(ckpt_dict, file_path, performance_score, train_iter=None, max_ckpts_to_keep=5, keep_cktp_every=2, timestamp=None)

	Save checkpoint to file.

Example

save_checkpoint({
 'state_dict': net.state_dict(),
 'train_iter': curr_iteration
}, 'ckpts/my_net', current_test_accuracy)

	Parameters:

	
	ckpt_dict – A dict with mostly arbitrary content. Though, most important,
it needs to include the state dict and should also include
the current training iteration.

	file_path –
	Where to store the checkpoint. Note, the filepath should
	not change. Instead, train_iter should be provided,
such that this method can handle the filenames by itself.

Note

The function currently assumes that within the same directory,
no checkpoint filenname is the prefix of another
checkpoint filename (e.g., if several networks are checkpointed
into the same directory).

	performance_score – A score that expresses the performance of the
current network state, e.g., accuracy for a
classification task. This score is used to
maintain the list of kept checkpoints during
training.

	train_iter (optional) – If given, it will be added to the filename.
Otherwise, existing checkpoints are simply overwritten.

	max_ckpts_to_keep – The maximum number of checkpoints to
keep. This will use the performance score to determine the n-1
checkpoints not to be deleted (where n is the number of
checkpoints to keep). The current checkpoint will always be saved.

	keep_cktp_every – If this option is not None,
then every n hours one checkpoint will be permanently saved, i.e.,
this checkpoint will not be maintained by ‘max_ckpts_to_keep’
anymore. The checkpoint to be kept will be the best one from the
time window that spans the last n hours.

	timestamp (optional) – The timestamp of this checkpoint. If not given,
a current timestamp will be used. This option is useful when one
aims to synchronize checkpoint savings from multiple networks.

A collection of helper functions that should capture common functionalities
needed when working with PyTorch.

	
class hypnettorch.utils.torch_utils.CutoutTransform(n_holes, length)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Randomly mask out one or more patches from an image.

The cutout transformation as preprocessing step has been proposed by

DeVries et al., Improved Regularization of Convolutional Neural Networks with Cutout [https://arxiv.org/abs/1708.04552], 2017.

The original implementation can be found here [https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py].

	Parameters:

	
	n_holes (int [https://docs.python.org/3/library/functions.html#int]) – Number of patches to cut out of each image.

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length (in pixels) of each square patch.

	
hypnettorch.utils.torch_utils.get_optimizer(params, lr, momentum=0, weight_decay=0, use_adam=False, adam_beta1=0.9, use_rmsprop=False, use_adadelta=False, use_adagrad=False, pgroup_ids=None)

	Create an optimizer instance for the given set of parameters. Default
optimizer is torch.optim.SGD [https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD].

	Parameters:

	
	params (list [https://docs.python.org/3/library/stdtypes.html#list]) – The parameters passed to the optimizer.

	lr – Learning rate.

	momentum (optional) – Momentum (only applicable to
torch.optim.SGD [https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD] and torch.optim.RMSprop [https://pytorch.org/docs/master/generated/torch.optim.RMSprop.html#torch.optim.RMSprop].

	weight_decay (optional) – L2 penalty.

	use_adam – Use torch.optim.Adam [https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam] optimizer.

	adam_beta1 – First parameter in the betas tuple that is passed to the
optimizer torch.optim.Adam [https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam]:
betas=(adam_beta1, 0.999).

	use_rmsprop – Use torch.optim.RMSprop [https://pytorch.org/docs/master/generated/torch.optim.RMSprop.html#torch.optim.RMSprop] optimizer.

	use_adadelta – Use torch.optim.Adadelta [https://pytorch.org/docs/master/generated/torch.optim.Adadelta.html#torch.optim.Adadelta] optimizer.

	use_adagrad – Use torch.optim.Adagrad [https://pytorch.org/docs/master/generated/torch.optim.Adagrad.html#torch.optim.Adagrad] optimizer.

	pgroup_ids (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – If passed, a list of integers of the same
length as params is expected. In this case, each integer states to
which parameter group the corresponding parameter in params
shall belong. Parameter groups may have different optimizer
settings. Therefore, options like lr, momentum,
weight_decay, adam_beta1 may be lists in this case that have
a length corresponding to the number of parameter groups.

	Returns:

	Optimizer instance.

	
hypnettorch.utils.torch_utils.init_params(weights, bias=None)

	Initialize the weights and biases of a linear or (transpose) conv layer.

Note, the implementation is based on the method “reset_parameters()”,
that defines the original PyTorch initialization for a linear or
convolutional layer, resp. The implementations can be found here:

https://git.io/fhnxV

https://git.io/fhnx2

	Parameters:

	
	weights – The weight tensor to be initialized.

	bias (optional) – The bias tensor to be initialized.

	
hypnettorch.utils.torch_utils.lambda_lr_schedule(epoch)

	Multiplicative Factor for Learning Rate Schedule.

Computes a multiplicative factor for the initial learning rate based
on the current epoch. This method can be used as argument
lr_lambda of class torch.optim.lr_scheduler.LambdaLR [https://pytorch.org/docs/master/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.LambdaLR].

The schedule is inspired by the Resnet CIFAR-10 schedule suggested
here https://keras.io/examples/cifar10_resnet/.

	Parameters:

	epoch (int [https://docs.python.org/3/library/functions.html#int]) – The number of epochs

	Returns:

	learning rate scale

	Return type:

	lr_scale (float32)

Tutorials on how to use hypernetworks in PyTorch

Here, we present a series of tutorials covering different aspects of the repository hypnettorch. These tutorials are meant as an easy entrance point for coding with this package.

	Getting started [https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/getting_started.ipynb]

	How to smartly chunk the weights of a Resnet [https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/smartly_chunked_resnet.ipynb]

	How to smartly chunk the weights of a Wide-Resnet [https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/wrn_chunking_strategies.ipynb]

	MCMC sampling [https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/hmc_example.ipynb]

Example implementations that use hypnettorch

Contents

	Example implementations that use hypnettorch

	Continual learning with hypernetworks

	Usage instructions

	Learning from the example

	Script to run CL experiments with hypernetworks

Let’s dive into some example implementations that make use of the functionalities provided by the package hypnettorch. You can explore the corresponding source code to see how to efficiently make use of all the functionalities that hypnettorch offers.

Continual learning with hypernetworks

In continual learning (CL), a series of tasks (represented as datasets) [image: \mathcal{D}_1, ..., \mathcal{D}_T] is learned sequentially, where only one dataset at a time is available and at the end of training performance on all tasks should be high.

An approach based on hypernets for tackling this problem was introduced by von Oswald, Henning, Sacramento et al. [https://arxiv.org/abs/1906.00695]. The official implementation can be found here [https://github.com/chrhenning/hypercl]. Goal of this example is it to demonstrate how hypnettorch can be used to implement such CL approach. Therefore, we provide a simple and light implementation that showcases many functionalities inherent to the package, but do not focus on being able to reproduce the variety of experiments explored in the original paper.

For the sake of simplicity, we only focus on the simplest CL scenario, called [https://arxiv.org/abs/1904.07734] task-incremental CL or CL1 (note, that the original paper proposes three ways of tackling more complex CL scenarios, one of which has been further studied in this paper [https://arxiv.org/abs/2103.01133]). Predictions according to a task [image: t] are made by inputting the corresponding task embedding [image: \mathbf{e}^{(t)}] into the hypernetwork in order to obtain the main network’s weights [image: \omega^{(t)} = h(\mathbf{e}^{(t)}, \theta)], which in turn can be used for processing inputs via [image: f(x, \omega^{(t)})]. Forgetting is prevented by adding a simple regularizer to the loss while learning task [image: t]:

(1)[image: \frac{\beta}{t-1} \sum_{t<t'} \lVert h(\mathbf{e}^{(t')}, \theta) - h(\mathbf{e}^{(t',*)}, \theta^{(*)}) \rVert_2^2]

where [image: \beta] is a regularization constant, [image: \mathbf{e}^{(t')}] are the task-embeddings, [image: \theta] are the hypernets’ parameters and parameters denoted by [image: {}^{(*)}] are checkpointed from before starting to learn task [image: t]. Simply speaking, the regularizer aims to prevent that the hypernetwork output [image: h(\mathbf{e}^{(t')}, \theta)] for a previous task [image: t'] changes compared to what was outputted before we started to learn task [image: t].

Note

The original paper uses a lookahead in the regularizer which showed marginal performance improvements. Follow-up work (e.g., here [https://github.com/mariacer/cl_in_rnns] and here [https://github.com/chrhenning/posterior_replay_cl]) discarded this lookahead for computational convenience. We ignore it as well!

Usage instructions

The script hypnettorch.examples.hypercl.run showcases how a versatile simulation can be build with relatively little coding effort. You can explore the basic functionality of the script via

$ python run.py --help

Note

The default arguments have not been hyperparameter-searched and may thus not reflect best possible performance.

By default, the script will run a SplitMNIST simulation (argument --cl_exp)

$ python run.py

The default network (argument --net_type) is a 2-hidden-layer MLP and the corresponding hypernetwork has been chosen to have roughly the same number of parameters (compression ratio is approx. 1).

Via the argument --hnet_reg_batch_size you can choose up to how many task should be used for the regularization in Eq. (1) (rather than always evaluating the sum over all previous tasks). This ensures that the computational budget of the regularization doesn’t grow with the number of tasks. For instance, if at every iteration a single random (previous) task should be selected for regularization, just use

$ python run.py --hnet_reg_batch_size=1

You can also run other CL experiments, such as PermutedMNIST (e.g., via arguments --cl_exp=permmnist --num_classes_per_task=10 --num_tasks=10) or SplitCIFAR-10/100 (e.g., via arguments --cl_exp=splitcifar --num_classes_per_task=10 --num_tasks=6 --net_type=resnet). Keep in mind, that with a change in dataset or main network, model sizes change and thus another hypernetwork should be chosen if a certain compression ratio should be accomplished.

Learning from the example

Goal of this example is it to get familiar with the capabilities of the package hypnettorch. This can best be accomplished by reading through the source code, starting with the main function hypnettorch.examples.hypercl.run.run().

	The script makes use of module hypnettorch.utils.cli_args for defining command-line arguments. With a few lines of code, a large variety of arguments are created to, for instance, flexibly determine the architecture of the main- and hypernetwork.

	Using those predefined arguments allows to quickly instantiate the corresponding networks by using functions of module hypnettorch.utils.sim_utils.

	Continual learning datasets are generated with the help of specialized data handlers, e.g., hypnettorch.data.special.split_mnist.get_split_mnist_handlers().

	Hypernet regularization (Eq. (1)) is easily realized via the helper functions in module hypnettorch.utils.hnet_regularizer.

There are many other utilities that might be useful, but that are not incorporated in the example for the sake of simplicity. For instance:

	The module hypnettorch.utils.torch_ckpts can be used to easily save and load networks.

	The script can be emebedded into the hyperparameter-search framework of subpackage hpsearch to easily scan for hyperparameters that yield good performance.

More sophisticated examples can also be explored in the PR-CL repository [https://github.com/chrhenning/posterior_replay_cl] (note, the interface used in this repository is almost identical to hypnettorch’s interface, except that the package wasn’t called hypnettorch back then yet).

Script to run CL experiments with hypernetworks

This script showcases the usage of hypnettorch by demonstrating how to use
the pacakge for writing a continual learning simulation that utilizes
hypernetworks. See here for details on the
approach and usage instructions.

	
hypnettorch.examples.hypercl.run.evaluate(task_id, data, mnet, hnet, device, config, logger, writer, train_iter)

	Evaluate the network.

Evaluate the performance of the network on a single task on the validation
set during training.

	Parameters:

	(....) – See docstring of function train().

train_iter (int): The current training iteration.

	
hypnettorch.examples.hypercl.run.load_datasets(config, logger, writer)

	Load the datasets corresponding to individual tasks.

	Parameters:

	
	config (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – Command-line arguments.

	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – Logger object.

	writer (tensorboardX.SummaryWriter) – Tensorboard logger.

	Returns:

	A list of data handlers
hypnettorch.data.dataset.Dataset.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list])

	
hypnettorch.examples.hypercl.run.run()

	Run the script.

	Define and parse command-line arguments

	Setup environment

	Load data

	Instantiate models

	Run training for each task

	
hypnettorch.examples.hypercl.run.test(dhandlers, mnet, hnet, device, config, logger, writer)

	Evaluate the network.

Evaluate the performance of the network on a single task on the validation
set during training.

	Parameters:

	
	(....) – See docstring of function train().

	dhandlers (list [https://docs.python.org/3/library/stdtypes.html#list]) – Datasets of tasks that should be tested. We assume
that the index of the dataset corresponds to the index of the task
embedding used as input to the hypernet.

	
hypnettorch.examples.hypercl.run.train(task_id, data, mnet, hnet, device, config, logger, writer)

	Train the network using the task-specific loss plus a regularizer that
should mitigate catastrophic forgetting.

[image: \text{loss} = \text{task_loss} + \beta * \text{regularizer}]

	Parameters:

	
	task_id (int [https://docs.python.org/3/library/functions.html#int]) – The index of the task on which we train.

	data (hypnettorch.data.dataset.Dataset) – The dataset handler for the
current task, corresponding to task_id.

	mnet (hypnettorch.mnets.mnet_interface.MainNetInterface) – The model of
the main network, which is needed to make predictions.

	hnet (hypnettorch.hnets.hnet_interface.HyperNetInterface) – The model of
the hyper network, which contains the parameters to be learned.

	device – (torch.device) Torch device (cpu or gpu).

	config (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – Command-line arguments.

	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – Logger object.

	writer (tensorboardX.SummaryWriter) – Tensorboard logger.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hypnettorch	

 	
 	
 hypnettorch.data.celeba_data	

 	
 	
 hypnettorch.data.cifar100_data	

 	
 	
 hypnettorch.data.cifar10_data	

 	
 	
 hypnettorch.data.cub_200_2011_data	

 	
 	
 hypnettorch.data.dataset	

 	
 	
 hypnettorch.data.fashion_mnist	

 	
 	
 hypnettorch.data.ilsvrc2012_data	

 	
 	
 hypnettorch.data.large_img_dataset	

 	
 	
 hypnettorch.data.mnist_data	

 	
 	
 hypnettorch.data.sequential_dataset	

 	
 	
 hypnettorch.data.special.donuts	

 	
 	
 hypnettorch.data.special.gaussian_mixture_data	

 	
 	
 hypnettorch.data.special.gmm_data	

 	
 	
 hypnettorch.data.special.permuted_mnist	

 	
 	
 hypnettorch.data.special.regression1d_bimodal_data	

 	
 	
 hypnettorch.data.special.regression1d_data	

 	
 	
 hypnettorch.data.special.split_cifar	

 	
 	
 hypnettorch.data.special.split_mnist	

 	
 	
 hypnettorch.data.svhn_data	

 	
 	
 hypnettorch.data.timeseries.audioset_data	

 	
 	
 hypnettorch.data.timeseries.cognitive_tasks.cognitive_data	

 	
 	
 hypnettorch.data.timeseries.copy_data	

 	
 	
 hypnettorch.data.timeseries.mud_data	

 	
 	
 hypnettorch.data.timeseries.rnd_rec_teacher	

 	
 	
 hypnettorch.data.timeseries.seq_smnist	

 	
 	
 hypnettorch.data.timeseries.smnist_data	

 	
 	
 hypnettorch.data.timeseries.split_audioset	

 	
 	
 hypnettorch.data.timeseries.split_smnist	

 	
 	
 hypnettorch.data.udacity_ch2	

 	
 	
 hypnettorch.examples.hypercl.run	

 	
 	
 hypnettorch.hnets.chunked_deconv_hnet	

 	
 	
 hypnettorch.hnets.chunked_mlp_hnet	

 	
 	
 hypnettorch.hnets.deconv_hnet	

 	
 	
 hypnettorch.hnets.hnet_container	

 	
 	
 hypnettorch.hnets.hnet_helpers	

 	
 	
 hypnettorch.hnets.hnet_interface	

 	
 	
 hypnettorch.hnets.hnet_perturbation_wrapper	

 	
 	
 hypnettorch.hnets.mlp_hnet	

 	
 	
 hypnettorch.hnets.structured_hmlp_examples	

 	
 	
 hypnettorch.hnets.structured_mlp_hnet	

 	
 	
 hypnettorch.hpsearch.gather_random_seeds	

 	
 	
 hypnettorch.hpsearch.hpsearch	

 	
 	
 hypnettorch.hpsearch.hpsearch_config_template	

 	
 	
 hypnettorch.hpsearch.hpsearch_postprocessing	

 	
 	
 hypnettorch.mnets.bi_rnn	

 	
 	
 hypnettorch.mnets.bio_conv_net	

 	
 	
 hypnettorch.mnets.classifier_interface	

 	
 	
 hypnettorch.mnets.lenet	

 	
 	
 hypnettorch.mnets.mlp	

 	
 	
 hypnettorch.mnets.mnet_interface	

 	
 	
 hypnettorch.mnets.resnet	

 	
 	
 hypnettorch.mnets.resnet_imgnet	

 	
 	
 hypnettorch.mnets.simple_rnn	

 	
 	
 hypnettorch.mnets.wide_resnet	

 	
 	
 hypnettorch.mnets.zenkenet	

 	
 	
 hypnettorch.utils.batchnorm_layer	

 	
 	
 hypnettorch.utils.cli_args	

 	
 	
 hypnettorch.utils.context_mod_layer	

 	
 	
 hypnettorch.utils.ewc_regularizer	

 	
 	
 hypnettorch.utils.gan_helpers	

 	
 	
 hypnettorch.utils.hmc	

 	
 	
 hypnettorch.utils.hnet_regularizer	

 	
 	
 hypnettorch.utils.init_utils	

 	
 	
 hypnettorch.utils.local_conv2d_layer	

 	
 	
 hypnettorch.utils.logger_config	

 	
 	
 hypnettorch.utils.misc	

 	
 	
 hypnettorch.utils.optim_step	

 	
 	
 hypnettorch.utils.self_attention_layer	

 	
 	
 hypnettorch.utils.si_regularizer	

 	
 	
 hypnettorch.utils.sim_utils	

 	
 	
 hypnettorch.utils.torch_ckpts	

 	
 	
 hypnettorch.utils.torch_utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	acceptance_probability (hypnettorch.utils.hmc.HMC property)

 	(hypnettorch.utils.hmc.MCMC property)

 	accuracy() (hypnettorch.mnets.classifier_interface.Classifier static method)

 	(in module hypnettorch.utils.gan_helpers)

 	adam_step() (in module hypnettorch.utils.optim_step)

 	
 	add_to_uncond_params() (hypnettorch.hnets.hnet_interface.HyperNetInterface method)

 	apply_chunked_hyperfan_init() (hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP method)

 	apply_hyperfan_init() (hypnettorch.hnets.mlp_hnet.HMLP method)

 	AudiosetData (class in hypnettorch.data.timeseries.audioset_data)

 	avg_acceptance_probability (hypnettorch.utils.hmc.MultiChainHMC property)

B

 	
 	basic_rnn_step() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	batchnorm_layers (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	BatchNormLayer (class in hypnettorch.utils.batchnorm_layer)

 	BimodalToyRegression (class in hypnettorch.data.special.regression1d_bimodal_data)

 	
 	BioConvNet (class in hypnettorch.mnets.bio_conv_net)

 	BiRNN (class in hypnettorch.mnets.bi_rnn)

 	bptt_depth (hypnettorch.mnets.simple_rnn.SimpleRNN property)

 	build_grid_and_conditions() (in module hypnettorch.hpsearch.gather_random_seeds)

C

 	
 	calc_delta_theta() (in module hypnettorch.utils.optim_step)

 	calc_fan_in_and_out() (in module hypnettorch.utils.init_utils)

 	calc_fix_target_reg() (in module hypnettorch.utils.hnet_regularizer)

 	calc_train_iter() (in module hypnettorch.utils.sim_utils)

 	CelebAData (class in hypnettorch.data.celeba_data)

 	chains (hypnettorch.utils.hmc.MultiChainHMC property)

 	check_invalid_argument_usage() (in module hypnettorch.utils.cli_args)

 	checkpoint_stats() (hypnettorch.utils.batchnorm_layer.BatchNormLayer method)

 	checkpoint_weights() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	chunk_emb_shapes (hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP property)

 	chunk_emb_size (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv property)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP property)

 	ChunkedHDeconv (class in hypnettorch.hnets.chunked_deconv_hnet)

 	ChunkedHMLP (class in hypnettorch.hnets.chunked_mlp_hnet)

 	CIFAR100Data (class in hypnettorch.data.cifar100_data)

 	CIFAR10Data (class in hypnettorch.data.cifar10_data)

 	cl_args() (in module hypnettorch.utils.cli_args)

 	classification (hypnettorch.data.dataset.Dataset property)

 	Classifier (class in hypnettorch.mnets.classifier_interface)

 	clear_position_trajectory() (hypnettorch.utils.hmc.HMC method)

 	(hypnettorch.utils.hmc.MCMC method)

 	CognitiveTasks (class in hypnettorch.data.timeseries.cognitive_tasks.cognitive_data)

 	compute_basic_rnn_output() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	compute_fc_outputs() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	
 	compute_fisher() (in module hypnettorch.utils.ewc_regularizer)

 	compute_hidden_states() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	concat_mean_stats() (in module hypnettorch.utils.gan_helpers)

 	cond_chunk_embs (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv property)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP property)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP property)

 	conditional_param_shapes (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	conditional_param_shapes_ref (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	conditional_params (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	conditions (in module hypnettorch.hpsearch.hpsearch_config_template)

 	config_logger() (in module hypnettorch.utils.logger_config)

 	configure_matplotlib_params() (in module hypnettorch.utils.misc)

 	construct_ideal_student() (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher static method)

 	context_mod_forward() (in module hypnettorch.utils.ewc_regularizer)

 	context_mod_layers (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	ContextModLayer (class in hypnettorch.utils.context_mod_layer)

 	convert_out_format() (hypnettorch.hnets.hnet_interface.HyperNetInterface method)

 	CopyTask (class in hypnettorch.data.timeseries.copy_data)

 	cov (hypnettorch.data.special.gaussian_mixture_data.GaussianData property)

 	create_permutation_matrix() (hypnettorch.data.timeseries.copy_data.CopyTask static method)

 	CUB2002011 (class in hypnettorch.data.cub_200_2011_data)

 	current_position (hypnettorch.utils.hmc.HMC property)

 	(hypnettorch.utils.hmc.MCMC property)

 	custom_init() (hypnettorch.mnets.mnet_interface.MainNetInterface method)

 	CutoutTransform (class in hypnettorch.utils.torch_utils)

D

 	
 	data_args() (in module hypnettorch.utils.cli_args)

 	Dataset (class in hypnettorch.data.dataset)

 	decode_batch() (hypnettorch.data.timeseries.mud_data.MUDData method)

 	dis_loss() (in module hypnettorch.utils.gan_helpers)

 	distillation_targets() (hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP method)

 	(hypnettorch.hnets.deconv_hnet.HDeconv method)

 	(hypnettorch.hnets.hnet_container.HContainer method)

 	(hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper method)

 	(hypnettorch.hnets.mlp_hnet.HMLP method)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP method)

 	(hypnettorch.mnets.bi_rnn.BiRNN method)

 	(hypnettorch.mnets.bio_conv_net.BioConvNet method)

 	(hypnettorch.mnets.lenet.LeNet method)

 	(hypnettorch.mnets.mlp.MLP method)

 	(hypnettorch.mnets.mnet_interface.MainNetInterface method)

 	(hypnettorch.mnets.resnet.ResNet method)

 	(hypnettorch.mnets.resnet_imgnet.ResNetIN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	(hypnettorch.mnets.wide_resnet.WRN method)

 	(hypnettorch.mnets.zenkenet.ZenkeNet method)

 	
 	Donuts (class in hypnettorch.data.special.donuts)

E

 	
 	estimate_distance() (hypnettorch.data.special.gmm_data.GMMData method)

 	estimate_mode_coverage() (hypnettorch.data.special.gmm_data.GMMData method)

 	
 	eval_args() (in module hypnettorch.utils.cli_args)

 	evaluate() (in module hypnettorch.examples.hypercl.run)

 	ewc_regularizer() (in module hypnettorch.utils.ewc_regularizer)

F

 	
 	FashionMNISTData (class in hypnettorch.data.fashion_mnist)

 	flatten_and_remove_out_heads() (in module hypnettorch.utils.hnet_regularizer)

 	flatten_params() (hypnettorch.mnets.mnet_interface.MainNetInterface static method)

 	forward() (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv method)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP method)

 	(hypnettorch.hnets.deconv_hnet.HDeconv method)

 	(hypnettorch.hnets.hnet_container.HContainer method)

 	(hypnettorch.hnets.hnet_interface.HyperNetInterface method)

 	(hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper method)

 	(hypnettorch.hnets.mlp_hnet.HMLP method)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP method)

 	(hypnettorch.mnets.bi_rnn.BiRNN method)

 	(hypnettorch.mnets.bio_conv_net.BioConvNet method)

 	(hypnettorch.mnets.lenet.LeNet method)

 	(hypnettorch.mnets.mlp.MLP method)

 	(hypnettorch.mnets.mnet_interface.MainNetInterface method)

 	(hypnettorch.mnets.resnet.ResNet method)

 	(hypnettorch.mnets.resnet_imgnet.ResNetIN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	(hypnettorch.mnets.wide_resnet.WRN method)

 	(hypnettorch.mnets.zenkenet.ZenkeNet method)

 	(hypnettorch.utils.batchnorm_layer.BatchNormLayer method)

 	(hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	(hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer method)

 	(hypnettorch.utils.self_attention_layer.SelfAttnLayer method)

 	(hypnettorch.utils.self_attention_layer.SelfAttnLayerV2 method)

G

 	
 	gain_offset_applied (hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	gain_softplus_applied (hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	gan_args() (in module hypnettorch.utils.cli_args)

 	GaussianData (class in hypnettorch.data.special.gaussian_mixture_data)

 	gen_loss() (in module hypnettorch.utils.gan_helpers)

 	generator_args() (in module hypnettorch.utils.cli_args)

 	get_attribute_names() (hypnettorch.data.celeba_data.CelebAData method)

 	get_best_ckpt_path() (in module hypnettorch.utils.torch_ckpts)

 	get_best_hpsearch_config() (in module hypnettorch.hpsearch.gather_random_seeds)

 	get_chunk_emb() (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv method)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP method)

 	get_chunk_embs() (hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP method)

 	get_cm_inds() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	get_cm_weights() (hypnettorch.mnets.bi_rnn.BiRNN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	get_colorbrewer2_colors() (in module hypnettorch.utils.misc)

 	get_cond_in_emb() (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv method)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP method)

 	(hypnettorch.hnets.deconv_hnet.HDeconv method)

 	(hypnettorch.hnets.mlp_hnet.HMLP method)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP method)

 	get_conditional_parameters() (in module hypnettorch.hnets.hnet_helpers)

 	get_current_targets() (in module hypnettorch.utils.hnet_regularizer)

 	get_default_args() (in module hypnettorch.utils.misc)

 	get_gmm_tasks() (in module hypnettorch.data.special.gaussian_mixture_data)

 	get_hpsearch_call() (in module hypnettorch.hpsearch.gather_random_seeds)

 	get_hypernet() (in module hypnettorch.utils.sim_utils)

 	get_identifier() (hypnettorch.data.celeba_data.CelebAData method)

 	(hypnettorch.data.cifar100_data.CIFAR100Data method)

 	(hypnettorch.data.cifar10_data.CIFAR10Data method)

 	(hypnettorch.data.cub_200_2011_data.CUB2002011 method)

 	(hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.fashion_mnist.FashionMNISTData method)

 	(hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data method)

 	(hypnettorch.data.mnist_data.MNISTData method)

 	(hypnettorch.data.special.donuts.Donuts method)

 	(hypnettorch.data.special.gaussian_mixture_data.GaussianData method)

 	(hypnettorch.data.special.gmm_data.GMMData method)

 	(hypnettorch.data.special.permuted_mnist.PermutedMNIST method)

 	(hypnettorch.data.special.regression1d_bimodal_data.BimodalToyRegression method)

 	(hypnettorch.data.special.regression1d_data.ToyRegression method)

 	(hypnettorch.data.special.split_cifar.SplitCIFAR100Data method)

 	(hypnettorch.data.special.split_cifar.SplitCIFAR10Data method)

 	(hypnettorch.data.special.split_mnist.SplitMNIST method)

 	(hypnettorch.data.svhn_data.SVHNData method)

 	(hypnettorch.data.timeseries.audioset_data.AudiosetData method)

 	(hypnettorch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks method)

 	(hypnettorch.data.timeseries.copy_data.CopyTask method)

 	(hypnettorch.data.timeseries.mud_data.MUDData method)

 	(hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher method)

 	(hypnettorch.data.timeseries.seq_smnist.SeqSMNIST method)

 	(hypnettorch.data.timeseries.smnist_data.SMNISTData method)

 	(hypnettorch.data.timeseries.split_audioset.SplitAudioset method)

 	(hypnettorch.data.timeseries.split_smnist.SplitSMNIST method)

 	(hypnettorch.data.udacity_ch2.UdacityCh2Data method)

 	
 	get_in_seq_lengths() (hypnettorch.data.sequential_dataset.SequentialDataset method)

 	get_input_mesh() (hypnettorch.data.special.gmm_data.GMMData method)

 	get_mnet_model() (in module hypnettorch.utils.sim_utils)

 	get_mud_handlers() (in module hypnettorch.data.timeseries.mud_data)

 	get_non_cm_weights() (hypnettorch.mnets.bi_rnn.BiRNN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	get_optimizer() (in module hypnettorch.utils.torch_utils)

 	get_out_pattern_bounds() (hypnettorch.data.timeseries.copy_data.CopyTask method)

 	get_out_seq_lengths() (hypnettorch.data.sequential_dataset.SequentialDataset method)

 	get_output_weight_mask() (hypnettorch.mnets.mnet_interface.MainNetInterface method)

 	(hypnettorch.mnets.resnet_imgnet.ResNetIN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	(hypnettorch.mnets.wide_resnet.WRN method)

 	get_single_run_config() (in module hypnettorch.hpsearch.gather_random_seeds)

 	get_split_audioset_handlers() (in module hypnettorch.data.timeseries.split_audioset)

 	get_split_cifar_handlers() (in module hypnettorch.data.special.split_cifar)

 	get_split_mnist_handlers() (in module hypnettorch.data.special.split_mnist)

 	get_split_smnist_handlers() (in module hypnettorch.data.timeseries.split_smnist)

 	get_stats() (hypnettorch.utils.batchnorm_layer.BatchNormLayer method)

 	get_task_emb() (hypnettorch.hnets.hnet_interface.HyperNetInterface method)

 	get_task_embs() (hypnettorch.hnets.hnet_interface.HyperNetInterface method)

 	get_test_ids() (hypnettorch.data.dataset.Dataset method)

 	get_test_inputs() (hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	get_test_outputs() (hypnettorch.data.dataset.Dataset method)

 	get_train_ids() (hypnettorch.data.dataset.Dataset method)

 	get_train_inputs() (hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	get_train_outputs() (hypnettorch.data.dataset.Dataset method)

 	get_val_ids() (hypnettorch.data.dataset.Dataset method)

 	get_val_inputs() (hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	get_val_outputs() (hypnettorch.data.dataset.Dataset method)

 	get_weights() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	get_zeroed_ts() (hypnettorch.data.timeseries.copy_data.CopyTask method)

 	GMMData (class in hypnettorch.data.special.gmm_data)

 	grid (in module hypnettorch.hpsearch.hpsearch_config_template)

H

 	
 	has_bias (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	(hypnettorch.mnets.resnet_imgnet.ResNetIN property)

 	(hypnettorch.mnets.wide_resnet.WRN property)

 	has_fc_out (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	has_gains (hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	has_linear_out (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	has_shifts (hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	HContainer (class in hypnettorch.hnets.hnet_container)

 	HDeconv (class in hypnettorch.hnets.deconv_hnet)

 	HMC (class in hypnettorch.utils.hmc)

 	HMLP (class in hypnettorch.hnets.mlp_hnet)

 	hnet_args() (in module hypnettorch.utils.cli_args)

 	HPerturbWrapper (class in hypnettorch.hnets.hnet_perturbation_wrapper)

 	hpsearch_cli_arguments() (in module hypnettorch.hpsearch.hpsearch)

 	hyper_shapes (hypnettorch.utils.batchnorm_layer.BatchNormLayer property)

 	hyper_shapes_distilled (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	hyper_shapes_learned (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	hyper_shapes_learned_ref (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	HyperNetInterface (class in hypnettorch.hnets.hnet_interface)

 	
 hypnettorch.data.celeba_data

 	module

 	
 hypnettorch.data.cifar100_data

 	module

 	
 hypnettorch.data.cifar10_data

 	module

 	
 hypnettorch.data.cub_200_2011_data

 	module

 	
 hypnettorch.data.dataset

 	module

 	
 hypnettorch.data.fashion_mnist

 	module

 	
 hypnettorch.data.ilsvrc2012_data

 	module

 	
 hypnettorch.data.large_img_dataset

 	module

 	
 hypnettorch.data.mnist_data

 	module

 	
 hypnettorch.data.sequential_dataset

 	module

 	
 hypnettorch.data.special.donuts

 	module

 	
 hypnettorch.data.special.gaussian_mixture_data

 	module

 	
 hypnettorch.data.special.gmm_data

 	module

 	
 hypnettorch.data.special.permuted_mnist

 	module

 	
 hypnettorch.data.special.regression1d_bimodal_data

 	module

 	
 hypnettorch.data.special.regression1d_data

 	module

 	
 hypnettorch.data.special.split_cifar

 	module

 	
 hypnettorch.data.special.split_mnist

 	module

 	
 hypnettorch.data.svhn_data

 	module

 	
 hypnettorch.data.timeseries.audioset_data

 	module

 	
 hypnettorch.data.timeseries.cognitive_tasks.cognitive_data

 	module

 	
 hypnettorch.data.timeseries.copy_data

 	module

 	
 hypnettorch.data.timeseries.mud_data

 	module

 	
 hypnettorch.data.timeseries.rnd_rec_teacher

 	module

 	
 hypnettorch.data.timeseries.seq_smnist

 	module

 	
 hypnettorch.data.timeseries.smnist_data

 	module

 	
 hypnettorch.data.timeseries.split_audioset

 	module

 	
 hypnettorch.data.timeseries.split_smnist

 	module

 	
 hypnettorch.data.udacity_ch2

 	module

 	
 hypnettorch.examples.hypercl.run

 	module

 	
 hypnettorch.hnets.chunked_deconv_hnet

 	module

 	
 	
 hypnettorch.hnets.chunked_mlp_hnet

 	module

 	
 hypnettorch.hnets.deconv_hnet

 	module

 	
 hypnettorch.hnets.hnet_container

 	module

 	
 hypnettorch.hnets.hnet_helpers

 	module

 	
 hypnettorch.hnets.hnet_interface

 	module

 	
 hypnettorch.hnets.hnet_perturbation_wrapper

 	module

 	
 hypnettorch.hnets.mlp_hnet

 	module

 	
 hypnettorch.hnets.structured_hmlp_examples

 	module

 	
 hypnettorch.hnets.structured_mlp_hnet

 	module

 	
 hypnettorch.hpsearch.gather_random_seeds

 	module

 	
 hypnettorch.hpsearch.hpsearch

 	module

 	
 hypnettorch.hpsearch.hpsearch_config_template

 	module

 	
 hypnettorch.hpsearch.hpsearch_postprocessing

 	module

 	
 hypnettorch.mnets.bi_rnn

 	module

 	
 hypnettorch.mnets.bio_conv_net

 	module

 	
 hypnettorch.mnets.classifier_interface

 	module

 	
 hypnettorch.mnets.lenet

 	module

 	
 hypnettorch.mnets.mlp

 	module

 	
 hypnettorch.mnets.mnet_interface

 	module

 	
 hypnettorch.mnets.resnet

 	module

 	
 hypnettorch.mnets.resnet_imgnet

 	module

 	
 hypnettorch.mnets.simple_rnn

 	module

 	
 hypnettorch.mnets.wide_resnet

 	module

 	
 hypnettorch.mnets.zenkenet

 	module

 	
 hypnettorch.utils.batchnorm_layer

 	module

 	
 hypnettorch.utils.cli_args

 	module

 	
 hypnettorch.utils.context_mod_layer

 	module

 	
 hypnettorch.utils.ewc_regularizer

 	module

 	
 hypnettorch.utils.gan_helpers

 	module

 	
 hypnettorch.utils.hmc

 	module

 	
 hypnettorch.utils.hnet_regularizer

 	module

 	
 hypnettorch.utils.init_utils

 	module

 	
 hypnettorch.utils.local_conv2d_layer

 	module

 	
 hypnettorch.utils.logger_config

 	module

 	
 hypnettorch.utils.misc

 	module

 	
 hypnettorch.utils.optim_step

 	module

 	
 hypnettorch.utils.self_attention_layer

 	module

 	
 hypnettorch.utils.si_regularizer

 	module

 	
 hypnettorch.utils.sim_utils

 	module

 	
 hypnettorch.utils.torch_ckpts

 	module

 	
 hypnettorch.utils.torch_utils

 	module

I

 	
 	ILSVRC2012Data (class in hypnettorch.data.ilsvrc2012_data)

 	imgs_path (hypnettorch.data.large_img_dataset.LargeImgDataset property)

 	in_shape (hypnettorch.data.dataset.Dataset property)

 	init_args() (in module hypnettorch.utils.cli_args)

 	init_chunk_embeddings() (in module hypnettorch.hnets.hnet_helpers)

 	init_conditional_embeddings() (in module hypnettorch.hnets.hnet_helpers)

 	init_hh_weights_orthogonal() (hypnettorch.mnets.bi_rnn.BiRNN method)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	init_params() (in module hypnettorch.utils.misc)

 	(in module hypnettorch.utils.torch_utils)

 	input_to_torch_tensor() (hypnettorch.data.cifar100_data.CIFAR100Data method)

 	(hypnettorch.data.cifar10_data.CIFAR10Data method)

 	(hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.fashion_mnist.FashionMNISTData method)

 	(hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	(hypnettorch.data.mnist_data.MNISTData method)

 	(hypnettorch.data.sequential_dataset.SequentialDataset method)

 	(hypnettorch.data.special.permuted_mnist.PermutedMNIST method)

 	(hypnettorch.data.svhn_data.SVHNData method)

 	(hypnettorch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks method)

 	(hypnettorch.data.timeseries.mud_data.MUDData method)

 	
 	internal_hnet (hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper property)

 	internal_hnets (hypnettorch.hnets.hnet_container.HContainer property)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP property)

 	internal_params (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	internal_params_ref (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	is_image_dataset() (hypnettorch.data.dataset.Dataset method)

 	is_one_hot (hypnettorch.data.dataset.Dataset property)

K

 	
 	knowledge_distillation_loss() (hypnettorch.mnets.classifier_interface.Classifier static method)

L

 	
 	lambda_lr_schedule() (in module hypnettorch.utils.torch_utils)

 	LargeImgDataset (class in hypnettorch.data.large_img_dataset)

 	layer_bias_vectors (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	layer_weight_tensors (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	leapfrog() (in module hypnettorch.utils.hmc)

 	LeNet (class in hypnettorch.mnets.lenet)

 	
 	list_to_str() (in module hypnettorch.utils.misc)

 	load_checkpoint() (in module hypnettorch.utils.torch_ckpts)

 	load_datasets() (in module hypnettorch.examples.hypercl.run)

 	LocalConv2dLayer (class in hypnettorch.utils.local_conv2d_layer)

 	log_prob_standard_normal_prior() (in module hypnettorch.utils.hmc)

 	logit_cross_entropy_loss() (hypnettorch.mnets.classifier_interface.Classifier static method)

 	lstm_rnn_step() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

M

 	
 	main_net_args() (in module hypnettorch.utils.cli_args)

 	MainNetInterface (class in hypnettorch.mnets.mnet_interface)

 	make_ckpt_list() (in module hypnettorch.utils.torch_ckpts)

 	mask_fc_out (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	mat_A (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher property)

 	mat_B (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher property)

 	mat_C (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher property)

 	max_num_ts_in (hypnettorch.data.sequential_dataset.SequentialDataset property)

 	max_num_ts_out (hypnettorch.data.sequential_dataset.SequentialDataset property)

 	MCMC (class in hypnettorch.utils.hmc)

 	mean (hypnettorch.data.special.gaussian_mixture_data.GaussianData property)

 	means (hypnettorch.data.special.gmm_data.GMMData property)

 	miscellaneous_args() (in module hypnettorch.utils.cli_args)

 	MLP (class in hypnettorch.mnets.mlp)

 	MNISTData (class in hypnettorch.data.mnist_data)

 	
 module

 	hypnettorch.data.celeba_data

 	hypnettorch.data.cifar100_data

 	hypnettorch.data.cifar10_data

 	hypnettorch.data.cub_200_2011_data

 	hypnettorch.data.dataset

 	hypnettorch.data.fashion_mnist

 	hypnettorch.data.ilsvrc2012_data

 	hypnettorch.data.large_img_dataset

 	hypnettorch.data.mnist_data

 	hypnettorch.data.sequential_dataset

 	hypnettorch.data.special.donuts

 	hypnettorch.data.special.gaussian_mixture_data

 	hypnettorch.data.special.gmm_data

 	hypnettorch.data.special.permuted_mnist

 	hypnettorch.data.special.regression1d_bimodal_data

 	hypnettorch.data.special.regression1d_data

 	hypnettorch.data.special.split_cifar

 	hypnettorch.data.special.split_mnist

 	hypnettorch.data.svhn_data

 	hypnettorch.data.timeseries.audioset_data

 	hypnettorch.data.timeseries.cognitive_tasks.cognitive_data

 	hypnettorch.data.timeseries.copy_data

 	hypnettorch.data.timeseries.mud_data

 	hypnettorch.data.timeseries.rnd_rec_teacher

 	hypnettorch.data.timeseries.seq_smnist

 	hypnettorch.data.timeseries.smnist_data

 	hypnettorch.data.timeseries.split_audioset

 	hypnettorch.data.timeseries.split_smnist

 	hypnettorch.data.udacity_ch2

 	hypnettorch.examples.hypercl.run

 	hypnettorch.hnets.chunked_deconv_hnet

 	hypnettorch.hnets.chunked_mlp_hnet

 	hypnettorch.hnets.deconv_hnet

 	hypnettorch.hnets.hnet_container

 	hypnettorch.hnets.hnet_helpers

 	hypnettorch.hnets.hnet_interface

 	hypnettorch.hnets.hnet_perturbation_wrapper

 	hypnettorch.hnets.mlp_hnet

 	hypnettorch.hnets.structured_hmlp_examples

 	hypnettorch.hnets.structured_mlp_hnet

 	hypnettorch.hpsearch.gather_random_seeds

 	hypnettorch.hpsearch.hpsearch

 	hypnettorch.hpsearch.hpsearch_config_template

 	hypnettorch.hpsearch.hpsearch_postprocessing

 	hypnettorch.mnets.bi_rnn

 	hypnettorch.mnets.bio_conv_net

 	hypnettorch.mnets.classifier_interface

 	hypnettorch.mnets.lenet

 	hypnettorch.mnets.mlp

 	hypnettorch.mnets.mnet_interface

 	hypnettorch.mnets.resnet

 	hypnettorch.mnets.resnet_imgnet

 	hypnettorch.mnets.simple_rnn

 	hypnettorch.mnets.wide_resnet

 	hypnettorch.mnets.zenkenet

 	hypnettorch.utils.batchnorm_layer

 	hypnettorch.utils.cli_args

 	hypnettorch.utils.context_mod_layer

 	hypnettorch.utils.ewc_regularizer

 	hypnettorch.utils.gan_helpers

 	hypnettorch.utils.hmc

 	hypnettorch.utils.hnet_regularizer

 	hypnettorch.utils.init_utils

 	hypnettorch.utils.local_conv2d_layer

 	hypnettorch.utils.logger_config

 	hypnettorch.utils.misc

 	hypnettorch.utils.optim_step

 	hypnettorch.utils.self_attention_layer

 	hypnettorch.utils.si_regularizer

 	hypnettorch.utils.sim_utils

 	hypnettorch.utils.torch_ckpts

 	hypnettorch.utils.torch_utils

 	
 	MUDData (class in hypnettorch.data.timeseries.mud_data)

 	MultiChainHMC (class in hypnettorch.utils.hmc)

N

 	
 	next_test_batch() (hypnettorch.data.dataset.Dataset method)

 	next_train_batch() (hypnettorch.data.dataset.Dataset method)

 	next_val_batch() (hypnettorch.data.dataset.Dataset method)

 	nn_pot_energy() (in module hypnettorch.utils.hmc)

 	normal_init() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	num_chains (hypnettorch.utils.hmc.MultiChainHMC property)

 	num_chunks (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv property)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP property)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP property)

 	num_ckpts (hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	num_classes (hypnettorch.data.dataset.Dataset property)

 	(hypnettorch.mnets.classifier_interface.Classifier property)

 	num_hyper_weights() (hypnettorch.mnets.classifier_interface.Classifier static method)

 	num_internal_params (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	
 	num_known_conds (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	num_modes (hypnettorch.data.special.gmm_data.GMMData property)

 	num_outputs (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	num_params (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	num_rec_layers (hypnettorch.mnets.bi_rnn.BiRNN property)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN property)

 	num_states (hypnettorch.utils.hmc.HMC property)

 	(hypnettorch.utils.hmc.MCMC property)

 	num_stats (hypnettorch.utils.batchnorm_layer.BatchNormLayer property)

 	num_steps (hypnettorch.utils.hmc.HMC property)

 	(hypnettorch.utils.hmc.NUTS property)

 	num_test_samples (hypnettorch.data.dataset.Dataset property)

 	num_train_samples (hypnettorch.data.dataset.Dataset property)

 	num_val_samples (hypnettorch.data.dataset.Dataset property)

 	NUTS (class in hypnettorch.utils.hmc)

O

 	
 	out_height (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer property)

 	out_shape (hypnettorch.data.dataset.Dataset property)

 	out_width (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer property)

 	output_to_torch_tensor() (hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.sequential_dataset.SequentialDataset method)

 	(hypnettorch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks method)

 	(hypnettorch.data.timeseries.copy_data.CopyTask method)

 	(hypnettorch.data.timeseries.mud_data.MUDData method)

 	
 	overwrite_internal_params() (hypnettorch.mnets.mnet_interface.MainNetInterface method)

P

 	
 	param_shapes (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	(hypnettorch.utils.batchnorm_layer.BatchNormLayer property)

 	(hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	(hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer property)

 	param_shapes_meta (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	(hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	permutation (hypnettorch.data.special.permuted_mnist.PermutedMNIST property)

 	(hypnettorch.data.timeseries.copy_data.CopyTask property)

 	PermutedMNIST (class in hypnettorch.data.special.permuted_mnist)

 	PermutedMNISTList (class in hypnettorch.data.special.permuted_mnist)

 	plot_dataset() (hypnettorch.data.special.donuts.Donuts method)

 	(hypnettorch.data.special.gaussian_mixture_data.GaussianData method)

 	(hypnettorch.data.special.regression1d_data.ToyRegression method)

 	plot_datasets() (hypnettorch.data.special.gaussian_mixture_data.GaussianData static method)

 	(hypnettorch.data.special.regression1d_data.ToyRegression static method)

 	plot_optimal_classification() (hypnettorch.data.special.gmm_data.GMMData method)

 	
 	plot_predictions() (hypnettorch.data.special.gaussian_mixture_data.GaussianData method)

 	(hypnettorch.data.special.regression1d_data.ToyRegression method)

 	plot_real_fake() (hypnettorch.data.special.gmm_data.GMMData method)

 	plot_sample() (hypnettorch.data.cifar10_data.CIFAR10Data method)

 	(hypnettorch.data.mnist_data.MNISTData static method)

 	plot_samples() (hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.special.gaussian_mixture_data.GaussianData method)

 	(hypnettorch.data.special.gmm_data.GMMData method)

 	(hypnettorch.data.special.regression1d_data.ToyRegression method)

 	plot_uncertainty_map() (hypnettorch.data.special.gmm_data.GMMData method)

 	png_format_used (hypnettorch.data.large_img_dataset.LargeImgDataset property)

 	position_trajectory (hypnettorch.utils.hmc.HMC property)

 	(hypnettorch.utils.hmc.MCMC property)

 	preprocess_fct (hypnettorch.mnets.bi_rnn.BiRNN property)

 	preprocess_gain() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	proposal_std (hypnettorch.utils.hmc.MCMC property)

R

 	
 	read_images() (hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	repair_canvas_and_show_fig() (in module hypnettorch.utils.misc)

 	reset_batch_generator() (hypnettorch.data.dataset.Dataset method)

 	ResNet (class in hypnettorch.mnets.resnet)

 	resnet_chunking() (in module hypnettorch.hnets.structured_hmlp_examples)

 	
 	ResNetIN (class in hypnettorch.mnets.resnet_imgnet)

 	rmsprop_step() (in module hypnettorch.utils.optim_step)

 	RndRecTeacher (class in hypnettorch.data.timeseries.rnd_rec_teacher)

 	run() (in module hypnettorch.examples.hypercl.run)

 	(in module hypnettorch.hpsearch.gather_random_seeds)

 	(in module hypnettorch.hpsearch.hpsearch)

S

 	
 	sample_annulus() (hypnettorch.data.special.donuts.Donuts static method)

 	save_checkpoint() (in module hypnettorch.utils.torch_ckpts)

 	SelfAttnLayer (class in hypnettorch.utils.self_attention_layer)

 	SelfAttnLayerV2 (class in hypnettorch.utils.self_attention_layer)

 	SeqSMNIST (class in hypnettorch.data.timeseries.seq_smnist)

 	sequence (hypnettorch.data.dataset.Dataset property)

 	SequentialDataset (class in hypnettorch.data.sequential_dataset)

 	setup_environment() (in module hypnettorch.utils.sim_utils)

 	sgd_step() (in module hypnettorch.utils.optim_step)

 	shapes_to_num_weights() (hypnettorch.mnets.mnet_interface.MainNetInterface static method)

 	shuffle_test_samples (hypnettorch.data.dataset.Dataset property)

 	shuffle_val_samples (hypnettorch.data.dataset.Dataset property)

 	si_compute_importance() (in module hypnettorch.utils.si_regularizer)

 	si_post_optim_step() (in module hypnettorch.utils.si_regularizer)

 	si_pre_optim_step() (in module hypnettorch.utils.si_regularizer)

 	si_regularizer() (in module hypnettorch.utils.si_regularizer)

 	SimpleRNN (class in hypnettorch.mnets.simple_rnn)

 	simulate_chain() (hypnettorch.utils.hmc.HMC method)

 	(hypnettorch.utils.hmc.MCMC method)

 	(hypnettorch.utils.hmc.NUTS method)

 	
 	simulate_chains() (hypnettorch.utils.hmc.MultiChainHMC method)

 	SMNISTData (class in hypnettorch.data.timeseries.smnist_data)

 	softmax_and_cross_entropy() (hypnettorch.mnets.classifier_interface.Classifier static method)

 	sparse_init() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	split_cm_weights() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	split_internal_weights() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	split_weights() (hypnettorch.mnets.simple_rnn.SimpleRNN method)

 	SplitAudioset (class in hypnettorch.data.timeseries.split_audioset)

 	SplitCIFAR100Data (class in hypnettorch.data.special.split_cifar)

 	SplitCIFAR10Data (class in hypnettorch.data.special.split_cifar)

 	SplitMNIST (class in hypnettorch.data.special.split_mnist)

 	SplitSMNIST (class in hypnettorch.data.timeseries.split_smnist)

 	stepsize (hypnettorch.utils.hmc.HMC property)

 	str_to_act() (in module hypnettorch.utils.misc)

 	str_to_floats() (in module hypnettorch.utils.misc)

 	str_to_ints() (in module hypnettorch.utils.misc)

 	StructuredHMLP (class in hypnettorch.hnets.structured_mlp_hnet)

 	SVHNData (class in hypnettorch.data.svhn_data)

T

 	
 	target_shapes (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	test() (in module hypnettorch.examples.hypercl.run)

 	test_angles_available (hypnettorch.data.udacity_ch2.UdacityCh2Data property)

 	test_ids_to_indices() (hypnettorch.data.dataset.Dataset method)

 	test_iterator() (hypnettorch.data.dataset.Dataset method)

 	test_x_range (hypnettorch.data.special.regression1d_data.ToyRegression property)

 	tf_input_map() (hypnettorch.data.cub_200_2011_data.CUB2002011 method)

 	(hypnettorch.data.dataset.Dataset method)

 	(hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data method)

 	(hypnettorch.data.large_img_dataset.LargeImgDataset method)

 	(hypnettorch.data.special.permuted_mnist.PermutedMNIST method)

 	(hypnettorch.data.udacity_ch2.UdacityCh2Data method)

 	tf_output_map() (hypnettorch.data.dataset.Dataset method)

 	to_common_labels() (hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data method)

 	torch_augment_images() (hypnettorch.data.cifar10_data.CIFAR10Data static method)

 	torch_in_shape (hypnettorch.data.special.permuted_mnist.PermutedMNIST property)

 	torch_input_transforms() (hypnettorch.data.cifar10_data.CIFAR10Data static method)

 	(hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data static method)

 	(hypnettorch.data.mnist_data.MNISTData static method)

 	(hypnettorch.data.special.permuted_mnist.PermutedMNIST static method)

 	(hypnettorch.data.udacity_ch2.UdacityCh2Data static method)

 	torch_test (hypnettorch.data.large_img_dataset.LargeImgDataset property)

 	torch_train (hypnettorch.data.large_img_dataset.LargeImgDataset property)

 	torch_val (hypnettorch.data.large_img_dataset.LargeImgDataset property)

 	ToyRegression (class in hypnettorch.data.special.regression1d_data)

 	train() (in module hypnettorch.examples.hypercl.run)

 	train_args() (in module hypnettorch.utils.cli_args)

 	train_ids_to_indices() (hypnettorch.data.dataset.Dataset method)

 	
 	train_iterator() (hypnettorch.data.dataset.Dataset method)

 	train_x_range (hypnettorch.data.special.regression1d_data.ToyRegression property)

 	training (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv attribute)

 	(hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP attribute)

 	(hypnettorch.hnets.deconv_hnet.HDeconv attribute)

 	(hypnettorch.hnets.hnet_container.HContainer attribute)

 	(hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper attribute)

 	(hypnettorch.hnets.mlp_hnet.HMLP attribute)

 	(hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP attribute)

 	(hypnettorch.mnets.bi_rnn.BiRNN attribute)

 	(hypnettorch.mnets.bio_conv_net.BioConvNet attribute)

 	(hypnettorch.mnets.classifier_interface.Classifier attribute)

 	(hypnettorch.mnets.lenet.LeNet attribute)

 	(hypnettorch.mnets.mlp.MLP attribute)

 	(hypnettorch.mnets.resnet.ResNet attribute)

 	(hypnettorch.mnets.resnet_imgnet.ResNetIN attribute)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN attribute)

 	(hypnettorch.mnets.wide_resnet.WRN attribute)

 	(hypnettorch.mnets.zenkenet.ZenkeNet attribute)

 	(hypnettorch.utils.batchnorm_layer.BatchNormLayer attribute)

 	(hypnettorch.utils.context_mod_layer.ContextModLayer attribute)

 	(hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer attribute)

 	(hypnettorch.utils.self_attention_layer.SelfAttnLayer attribute)

 	(hypnettorch.utils.self_attention_layer.SelfAttnLayerV2 attribute)

 	transform_outputs() (hypnettorch.data.special.split_cifar.SplitCIFAR100Data method)

 	(hypnettorch.data.special.split_cifar.SplitCIFAR10Data method)

 	(hypnettorch.data.special.split_mnist.SplitMNIST method)

 	(hypnettorch.data.timeseries.split_audioset.SplitAudioset method)

 	(hypnettorch.data.timeseries.split_smnist.SplitSMNIST method)

U

 	
 	UdacityCh2Data (class in hypnettorch.data.udacity_ch2)

 	unconditional_param_shapes (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	unconditional_param_shapes_ref (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	unconditional_params (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	
 	unconditional_params_ref (hypnettorch.hnets.hnet_interface.HyperNetInterface property)

 	uniform_init() (hypnettorch.utils.context_mod_layer.ContextModLayer method)

 	use_lstm (hypnettorch.mnets.bi_rnn.BiRNN property)

 	(hypnettorch.mnets.simple_rnn.SimpleRNN property)

V

 	
 	val_ids_to_indices() (hypnettorch.data.dataset.Dataset method)

 	
 	val_iterator() (hypnettorch.data.dataset.Dataset method)

 	val_x_range (hypnettorch.data.special.regression1d_data.ToyRegression property)

W

 	
 	weight_shapes (hypnettorch.utils.self_attention_layer.SelfAttnLayerV2 property)

 	weight_shapes() (hypnettorch.mnets.mlp.MLP static method)

 	weights (hypnettorch.mnets.mnet_interface.MainNetInterface property)

 	(hypnettorch.utils.batchnorm_layer.BatchNormLayer property)

 	(hypnettorch.utils.context_mod_layer.ContextModLayer property)

 	(hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer property)

 	(hypnettorch.utils.self_attention_layer.SelfAttnLayerV2 property)

 	
 	write_seeds_summary() (in module hypnettorch.hpsearch.gather_random_seeds)

 	WRN (class in hypnettorch.mnets.wide_resnet)

 	wrn_chunking() (in module hypnettorch.hnets.structured_hmlp_examples)

X

 	
 	xavier_fan_in_() (in module hypnettorch.utils.init_utils)

Z

 	
 	ZenkeNet (class in hypnettorch.mnets.zenkenet)

 _images/math/4db5b6e16e06f929ce3f675c5e535d06ffb02ff7.png

_images/math/4deccba2623f8475b798bb387ae3c64ad73a142c.png
—plx)log p(x)

_images/math/4c994bec54cdb366551c64fd73ee4992450696e3.png
(k)

i+ o

PORPSTRE

_images/math/4d7b583bf3dc1d865e4d5ddcc9ee4f3f2e2b0a24.png

_images/math/4e2b4dfc8b34138d2b008ba20e08bb78394d1781.png
~ N(0,1)

_images/math/7f947325747f9e3a6db6de67e770cc4bfb6065de.png
|target; — h(c;, 6 + A8)||°

_images/math/f6035c4accc2e4609c99ea1efdda68d13ce2870b.png
hie, #)

_images/math/51d015c57d6b9656aca3a2b8384d37d429479522.png

_images/math/f4597c28f3c924e5650bf95286b4a8ae08a2f862.png
theta

_images/math/82da5f8188e6df68d54f4155ea2280a241c2ea75.png

_images/math/f6b4a0ee85866ac68fe6f333a6b5b9fe7aa964f6.png

_images/math/7f959f324a613a11606924adec2528320c698042.png
qa(W)

_images/math/f655bd7f2c801f6c308297962160678a2e5f6c20.png

_images/math/888f7c323ac0341871e867220ae2d76467d74d6e.png

_images/math/f7cf55b26d7d1e825f644f9507f5c4552c2f127a.png

_images/math/86941ffc3049066c5e408c4f2694d07ab9f161dd.png
Ustats

_images/math/f7429ca5d1ccb3a5151807b6e96a9bf38d81ba49.png

_images/math/895a7bff916476d2e292909ee1d297d5585b9824.png
- 1
0gp(0| D+, Dr) ~ logp(Dr | 6) = 5 3 (Zwm,, Wit =

< \ioT prior

(6: — 03,)" + const

_images/math/fa4d0eb07934fe149c235c897da698a2d03bb38f.png
Ct

_images/math/891a7190edd67e7b24a994c3311cd34b5f738a37.png

_images/math/f9274f5e09b152719b3af5b4676860c78b0db874.png

_images/math/8a87f04e7d7cca18343c084cceca5237fae62491.png

_images/math/fce158a00aed5cf16785ada991f657d2724aaa59.png

_images/math/8a5ef069ed02cd02b4e8a97fa38bc1d9e4c9c465.png

_images/math/fc3698d14ee8c8eddd42a92248bb934c5a08a6c6.png
HMC.simulate, hain

_images/math/7d8ff7a1da6eb898c0b43b2faf27739923c35ff0.png

_images/math/7d5cd3ac39f01d5f84fd7c5ebfaf0ae0ef4642d1.png
NLL =

22 (Fulz, W) —y)°

_images/math/f430b08dbe87ecd830dc6c2b0b13a8d75dd28fff.png

_images/math/4c120f773ab4e1c59ad2bd44aae969ce24dd190a.png

_images/math/4c80c11332c83882c5bb6f993a1a59a330c2470d.png

_images/math/49c88123fab3eafbf9adb8bc726bac1e38a817be.png

_images/math/4abba779877abb276b98ccb2b4ba9bf2e41947ab.png

_images/math/ece37185990cc02ecb51aee49eca21b08d2bef7f.png
c € [

_images/math/734ac74c233a957990209740c87a8766062195e2.png

_images/math/ed7d406b045b21da977db37285c181d4c44df147.png
plt+5) =pilt) -

5 5 5, 4®)

pilt+ (1= 1e+¢/2)

Glt 1) = gilt+ (1=) + ¢ — Vi=1.L
p1(t+ls+§): p1(t+(l71)s+§)fs Z—Z(q(t+ls)) Wi=1.L-1
e+ L0 =plt+ (L-De+)~ S (gt 4 1))

2’7 204

_images/math/7308c15925040a5d66d11bec449df46939c5beb3.png

_images/math/ed0dbc342a3e965143efcb96fa3810219ab2ad42.png
[o 0

etatss Ustats) s

_images/math/747cff9ebe6b7e3621952595debebc0e69ed3b72.png
U noise

_images/math/effcdeff466b9f24de7cd012969274bf4ad104c0.png

_images/math/744cc827daf29aa72079c5b7d4b7b4c152782b43.png

_images/math/ed7d8c25b488be154b9b821d2f53a38bb0ee3e24.png

_images/math/77f293ca746fedee074385d87bc2afba7f6a2132.png
Alk) £ RBhtinxnin

_images/math/f13c14fafdc43d314c33c55a5762ee5d664d88db.png

_images/math/776e57daac64db66f59de34d328e0a06dfd0fa4f.png

_images/math/f0ea17fb16d008dd9faa0380b0d9971af5ef431d.png

_images/math/7ab3f2fe76046a2b1b0943e85a2c34732a9bfbf1.png

_images/math/f422e38f3feb9c9da007269fd8ba46a80fd60746.png
sum(-)

_images/math/7896dee89d84a91ddc1915ee85966152e125a4d5.png

_images/math/f3a4f44c88644536fea2f285015537806ee71b91.png

_images/math/71ff8bbe0f5610faa3e806593352782751e56e59.png

_images/math/ec5f231fae06c5b657e3fc5f507b31bf9dd67643.png

_images/math/7138dad9ac96835665b17f5817eacfcaa9b834c9.png

_images/math/e9ed5974e79a5141932a54ee8eaeeb4379c17f56.png

_images/math/72a27a5a853a5b2c79722a44bfe7cb892f48322a.png
1.

WL

_images/math/97a519f6e5686d4f57381f5fadab8d105d97193c.png
0; € Kb

_images/math/984158fdcc41dddf78dc4453e460ab5db65e1004.png

_images/math/982c7ee2f7cefe73ab7855357c42e7abb226631a.png

_images/math/9b26ab385973f81f642d86538c0e72664f725205.png

_images/math/995432bf9dc2f4031118c741ba2672d3d889b21d.png

_images/math/a12df5647860f74beea60721d1593a32cbdd3c7d.png

_images/math/9bbcda9bfad826ded4cb48fdb2c8cf218b482353.png

_images/math/a54cdcc5a394df75e0f21a2f44a6d6c4bf1b90a3.png
dim(Z) + dim(W)

_images/math/a4c5eaeb83acba2d53272ffa416c56f323699cc5.png

_images/math/a5fa84b363f309ebc8fe7db38304541732c7de9a.png

_images/math/febc203e1ca319a051d17ef324cccad481e72a85.png

_images/math/8cc9eef2fed8222d737b1ec61b7ca1849aa76552.png

_images/math/8b79605e88e6ebb950c74a1319cdc046dae2069c.png

_images/math/8f3c6b529aaa515fdbc6c51b4fc4f73293dbfc09.png
Ly

_static/minus.png

_images/math/8d051150f8669295ecdbe92367941012175a824d.png

_static/file.png

_images/math/907a5a7e2cf00581887e238d05cef958861ef6ec.png
Var(v)

_images/math/907a4add6d5db5b7f197f7924f1371b8ac404fe6.png

_static/plus.png

_images/math/94597424afa0a5cb45d82ed5aef66d385465f156.png

_images/math/930b9ce788f3451c29324f118da8af82c18032d9.png
log plq)

_images/math/96c4ca34e8ca586ec883ac07b99b4b4f034e737b.png
Var(y) = n,Val('u.)Val(e) + ncVar(w)Var(c)

ne
Ve Ve
T n.+n, ar(e) + n.+n,. ar(c)

_images/math/9630132210b904754c9ab272b61cb527d12263ca.png

_images/math/8aff707356db5921ada328e89bc11ded343da293.png

_images/math/254f0f717b7f9c5aa47278a9651b86598e9ed867.png
K
ple) = D mN (s i, T

—1

_images/math/277755127186ef5b4878b7017b9532f6cd140ad1.png

_images/math/24d38a6a9d9256f5c7ed865a686a0eb7cf70d8e4.png

_images/math/24f8298394590840f50413ac40c1aec8c95fc4f2.png

_images/math/2a9f1d7185af34c5322ea865e2c6c24609869e41.png
1 <7 < Cout

_images/math/2b41791ed44fb6dabdb5f523129693241007b814.png

_images/math/2837cef99bcd25440936b48aad5e6a2b894d1ac7.png
log p(y | | f(x) — y||* + const

_images/math/29f0011f504939f9152aa45f85e53f25f5a234b3.png

_images/math/2c90139a969e27fc1c05729a4f456f2f81850b40.png

_images/math/5a939c5280da7202ca4531f175a7780ad5e1f80a.png

_images/math/d4c3736d429135342426c99744dfeefe7db05643.png

_images/math/2ce8ffee5291a235c5c417ff429a259f9854475c.png

_images/math/d48696c2da98ab997fbae987aea75d84ebc459ff.png

_images/math/5ad2c7352796a738f9c8832e4ea4793e84e4c2f4.png

_images/math/d56b67b4e3927ba7eace3792b9f8fc0f8934f6df.png

_images/math/5aa339d4daf45a810dda332e3c80a0698e526e04.png

_images/math/d520a12f1579170834c32ad5f656de081bbb36fe.png

_images/math/5b68fdd412338e3df18c0b9b479c6f8ad4cd3367.png
Migtats

_images/math/d7b50a08d394f0d214b17dae91692b62b4c3a588.png
Var(c) = max {n, — [(ne + no)Var(v) — n,Val(e)]}

_images/math/5add879b1127a989d0386e79739ce95c82b43c5b.png
L 2
—5lla =l = {g—.p)

_images/math/d779bfc81449a9396441948d00c0f4ff79248405.png
ply | =)

_images/math/56d0dce0ecae1a4615e0392a2683e8fbbe45249d.png

_images/math/d0f16735ac5dfe7913ffa8ae2bd64e4201ae20eb.png
X g+ 8

_images/math/54fb1702daff4bc998e1c95173017d7f2cbabd61.png
(WhaTy—1 + Winze + bp)
01 = o(Whohy + by)
ORI

_images/math/d091c7781eaea48c11c144206620ca7b5c50e2bb.png

_images/math/597bb4295b89302a60d732b54371d8b96086077a.png

_images/math/d269a4d62895f7e09d7866c8c40e906c13ca4bf3.png
Dy (real || fake)

_images/math/579dc39b9804912201edac1eabf0ca174308f916.png
ply | =, task_id)

_images/math/d202e378ff02af696b2d38bd1ea983e92a5f2743.png

_images/math/5a8c6131fac0dee0f182f627c59da3570e1d4de4.png

_images/math/5a7c9d98846fa8d58b00e1587b3d6bbab2da47e9.png

_images/math/d2717be207cfff2b6f3a7e0a2a37af7f869dda71.png
U(W) = —logp(D | W) —logp(W)
== Y logplya | Wizn) —logp(W)

_images/math/32c18e39d19e047b66e082072092ae1493f7cb45.png
plye

1|x)

_images/math/347d746e6a03cd39e1a794b4fbc94894dd6d77f6.png

_images/math/304bd19147488f33dca13f6697c0464397c9c636.png
— limy(z)—0 pl) log pl

_images/math/318bdea727411e434d3d2390f6c7ee05d7b7bf38.png

_images/math/350c56f6a1f10a328a49b6a871c7144785231694.png

_images/math/355add7b8cd7a59a8935a11485fa7efc2d2ac2b6.png
FO(z, y)

_images/math/349c0e2dbdade2e90e54c3fdf0342401c320c56e.png

_images/math/34d137cf01c787ecda732761c3f95b0f65a6c3e9.png

_images/math/35ad4877117b474fed380b998ab8f1a4d8293ddf.png

_images/math/ca9309d9103be7296be79174e63d2cce7ff83f29.png
dim(W) = dim(2Z)

_images/math/53586c33236156209d2a58fdf91e96acdd562f05.png

_images/math/cea92bca7297115965c0e54f2ac917bd00fc2b4f.png

_images/math/52ddc0cde6d632f631533173562fe3ca375b1f32.png

_images/math/cd3642a2773f2cb0c3aa25b79edf78f3d53aa5dc.png

_images/math/53c5b6d3c9a12fc01a66da510a23c187f193043b.png
K(p)
=p' M~
M~1p/2

_images/math/d05b805818e007077fc755176c82b44d084f7022.png
1 € {2,3,4}

_images/math/5369e693370bbbd19fea43055b8f96596bff42a6.png

_images/math/cefc603e5658facb747581f9567192993f21c7ab.png

_images/math/c3fb5bdcd332183596251f3ecfc3110e1d4493ca.png
Var(v)

Z ngVar(wy,
T

_images/math/c3e87e2c24ab13f478d2409d626fbdd7e4ff3370.png
Dy (fake || real)

_images/math/c605e79d60f7b21de44f33ea934c70ef6cc1541d.png

_images/math/c487813f4c24040a19d9644e70550a400b5a9605.png

_images/math/c8735eaf7a647af78ef2340fd9a7467054f3de9d.png

_images/math/c7e8fee54f825ced9b447c0e26342b8c8f20ea50.png

_images/math/2d29abe7912a2baaa2fa853acaf8507ca2bcfcda.png
ply | 0,x)

_images/math/3bfb3a64189a14b2704f4610827762d5e3145114.png

_images/math/3d1249f78beca1db150d280c7968fc2a1928c13c.png

_images/math/397bdb589bf8f310eaa9ce21cf02b7d760881d91.png
I € [g€Min *Min

_images/math/3992d81075e5f0da353cc5dc4d6957da6905b787.png

_images/math/3fde64852539cefee890ef86915199625f460eac.png
ply,)

_images/math/407c20726ce29f67fa50b0d70ba87eddc16f2209.png
plyi | ¥1,- -, ¥i-1,0:%;) = softmax(f(x;, hi_1,6))

_images/math/3edd099e43ac38851044450893699dfd6d581662.png
A

_images/math/3f53fffb2b545f46841b87b40feba5db7b298654.png
(0,0.02)

_images/math/6c74a61cdf90a8a3b50f62a58910b84d0fe23678.png
N

_images/math/e4a571734bc500aa0e55e2af27a76248c38fa0d9.png

_images/math/e3fc28292267f066fee7718c64f4bbfece521f24.png

_images/math/6cef6d1b2ec39b442d6df752b2094d035d3d334b.png
Fl(z y) € RExK

_images/math/e7be5727dd0d0062626d8de5fc697c95e0d73370.png

_images/math/6c9ca5ef314029a21652ef43d3570f5aae3ed41b.png
B'k) & Biax7in

_images/math/e5556fa7a383e2958049a242a1d28e0489259b4d.png

_images/math/6f1b1454449ee3b349bee4526ba266191da8a561.png

_images/math/e84560c2598cc18ad51f8f797b299a4096728ec2.png
) =hglz)+€, . z~pz(Z)and €, ~ Ppoise(W)

_images/math/6f079f634d501d4dcfd466b3d465269b10c451f7.png

_images/math/e7cb247a7fb1bf53fae4b0fb0c2d4d3ffc535f22.png

_images/math/70729aca7d2bdeb85daecbb38446905a7d7d531c.png

_images/math/e9e20ccfd1cf78847e133a8b1997b6fad058ab5c.png
hic;, %)

_images/math/6fee8be5b19fcec543a306aff0df3f3a5b064f78.png
Iorev

_images/math/e8dea8254118f111b5fb20895b03528c17566f06.png

_images/math/692b7aa0c3d56663473e7b1579bd1ac538c1a87e.png

_images/math/e269bee59d9979487e48b56b99e3e49dd6ebc093.png

_images/math/6829469de790b33e2cfefe5dbd8089cf84374b25.png
[U{q) = —logp(g) + const.

_images/math/e0792dbc1b22d34a58c9bbabe01e64d00f7ce577.png
p(y | 6:%) = [[p(vi | 31, -, ¥, 6 0)

ey

_images/math/6c28e896a7b0294ac67cde493fd1eb1b6de03459.png

_images/math/69dc4e93a92969fe1310c5b8847a4da7d1bcddb8.png
f(x,w)

_images/math/e2b479eed179c2ffe91110e4fd867bae98bfdc4f.png

_images/math/393b210f25dbfef858199bc7a5b0f547fb4e65bc.png

_images/math/394542e7c4ebce6c9baab29b47ac42ca427542c9.png
ply | 0,z) =ply| x)

_images/math/42f66859a72285694d4c743ce5f736c5df4f2182.png

_images/math/464e1592f73b030553a806f080b3a0370d1c6543.png

_images/math/42795e4c58789831fecb270cf4b89f725915bf67.png
ask_loss + 3 * regularizer

_images/math/42ca3dba6a145a722a743dadbf692045fa1dc421.png

_images/math/49c71e1a7d872e22bb673082d8c760503dde612e.png

_images/math/470aa65888a2971c9346e573f12b37ea406b8ec9.png

_images/math/47436615f59c3c0766353921cb8ee8ad124b35d6.png

_images/math/dcf450cba4a8fa98de41ffc066c23dc8ea74e2c5.png
k) £ RroutXnin

_images/math/62faf2a524c9388505c14ffbb6e7c2e2c27cdf8c.png
pzlz)

_images/math/ddad680f5f052acccdb6028aa1598723fa6b7d1a.png
—plx)log p(x) € [0,exp(—1)]

_images/math/615ec03d7712a2b3a2ad3b3e1df8e09ccbe4c147.png
he = concat(ht .

_images/math/dd1d00b085d0596c8c2e786c3752231fef9dd352.png
Ep(zy) [Vologp(y | 0,2)Velogply | 6,2)"]
Epto [Eptn [Volognly |0,0)Valognly | 0,27

@(h%w [Vologp(yn | 0,20) Volog plyn | 9,17.)Tﬂ

_images/math/63c800feed2862231d5d71172279fb7b104982ac.png

_images/math/de0b48709e1ac448e5fed900de476620bb09d092.png
arg maxy TN (T g, Tk)

_images/math/63017078cd10c52ea0ce305fa0f59f9a40ed8efc.png

_images/math/ddb5f98237e84878ba9f90a02c16fda2c96b306a.png
e + e

Var(e) < Var(v)

_images/math/66660f908a4ae94d7f547dff0d4b1b9da714fbb6.png

_images/math/e00f6bd12af9262dbec1fdf2f0f372b07e051d2c.png
te[l,

_images/math/6644c4071f40ec2f6ea6603c0723045c8f0243d0.png
NLL = —logp(Y =1 | #:x)

s
= >~ —softmax(f (xi, hi-1,6)1,)
=

s
= > cross entropy(f (xi, hi-1,6), t:)
~

_images/math/de779df89db518ec94246651bb3e4f3b8deac2a3.png
ply | Wi x)

_images/math/5c600c0c3b4e4467b0e9be76f56a53675c5d7609.png

_images/math/d95f3e29c7ea397a1a8e2c6e0580e11fbe0775a6.png
pr ~ qlp | pi-1)

_images/math/5be96c339d923663ffe25e290e3c9023cef6563b.png

_images/math/d938cf273761c2321c0ab0aca6b10bccf7ce00bb.png

_images/math/60938dac877e6c5398821607d77a7e3841ad8488.png

_images/math/dcbb9549409aaeabc7bbd834d84a05afceb6efe2.png
D ln(e,8) = el o)

14+
o

_images/math/5e63be8d073bacf711589d3aa71eabfe74a71acc.png
Var(wy),..., Var(wg)

_images/math/d99748b9c04f896155717105e8b5d778f7ef0a68.png
40

_images/math/60f4822f02b44d931c5d0595da71dcf34e270437.png

_images/math/41371d6be933a5e89089ab79cb8a39278080d14a.png
hiz, e;:0)

_images/math/421315ad8193572e908c542316357c699bb92d92.png

_images/math/40edc2277de9d9e1cac30d970b1180697b6cb588.png

_images/math/015755a22b6219b345c36a9a47b091dc56007486.png

_images/math/02fc3d1684848b1adba5386a6827edddd8a7cb4b.png
he(z) . z~pz(2)

_images/math/05b318f3655251667a8ec8efb3e74fc512c7c1a1.png
B(3.3)

_images/math/07fa26c278763adb4ba5741ddc6354421e5a424b.png
B

_images/math/0422dcbcb5e5d2aa524f074de5e8b25c6a436c4e.png

_images/math/0495d9174ccdd094877aadef59cbc544626348b7.png

_images/math/08dfd7399e8e2f0a9715c6f9a13a55d8a368a038.png

_images/math/09f199ae634ca653278cddfd301f2394bacb1777.png

_images/math/0a7a97342d218936a83444f115de80be566530a7.png

nav.xhtml

 Table of Contents

 		
 hypnettorch - Hypernetworks in PyTorch

 		
 Data Handlers

 		
 Preparation of datasets

 		
 Large-scale CelebFaces Attributes (CelebA) Dataset

 		
 Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

 		
 Udacity Steering Angle Prediction

 		
 API

 		
 Dataset Interface

 		
 Dataset

 		
 Wrapper for large image datasets

 		
 LargeImgDataset

 		
 Wrapper for sequential datasets

 		
 SequentialDataset

 		
 CelebA Dataset

 		
 CelebAData

 		
 CIFAR-10 Dataset

 		
 CIFAR10Data

 		
 CIFAR-100 Dataset

 		
 CIFAR100Data

 		
 CUB-200-2011 Dataset

 		
 CUB2002011

 		
 Fashion-MNIST Dataset

 		
 FashionMNISTData

 		
 ILSVRC2012 Dataset

 		
 ILSVRC2012Data

 		
 MNIST Dataset

 		
 MNISTData

 		
 Street View House Numbers (SVHN) Dataset

 		
 SVHNData

 		
 Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

 		
 UdacityCh2Data

 		
 Sequential, custom and special datasets

 		
 Custom and special datasets

 		
 Timeseries Datasets

 		
 Hypernets

 		
 Hypernetwork Interface

 		
 HyperNetInterface

 		
 HyperNetInterface.add_to_uncond_params()

 		
 HyperNetInterface.conditional_param_shapes

 		
 HyperNetInterface.conditional_param_shapes_ref

 		
 HyperNetInterface.conditional_params

 		
 HyperNetInterface.convert_out_format()

 		
 HyperNetInterface.forward()

 		
 HyperNetInterface.get_task_emb()

 		
 HyperNetInterface.get_task_embs()

 		
 HyperNetInterface.num_known_conds

 		
 HyperNetInterface.num_outputs

 		
 HyperNetInterface.target_shapes

 		
 HyperNetInterface.unconditional_param_shapes

 		
 HyperNetInterface.unconditional_param_shapes_ref

 		
 HyperNetInterface.unconditional_params

 		
 HyperNetInterface.unconditional_params_ref

 		
 Chunked Deconvolutional Hypernetwork with Self-Attention Layers

 		
 ChunkedHDeconv

 		
 ChunkedHDeconv.chunk_emb_size

 		
 ChunkedHDeconv.cond_chunk_embs

 		
 ChunkedHDeconv.forward()

 		
 ChunkedHDeconv.get_chunk_emb()

 		
 ChunkedHDeconv.get_cond_in_emb()

 		
 ChunkedHDeconv.num_chunks

 		
 ChunkedHDeconv.training

 		
 Chunked MLP - Hypernetwork

 		
 ChunkedHMLP

 		
 ChunkedHMLP.apply_chunked_hyperfan_init()

 		
 ChunkedHMLP.chunk_emb_size

 		
 ChunkedHMLP.cond_chunk_embs

 		
 ChunkedHMLP.distillation_targets()

 		
 ChunkedHMLP.forward()

 		
 ChunkedHMLP.get_chunk_emb()

 		
 ChunkedHMLP.get_cond_in_emb()

 		
 ChunkedHMLP.num_chunks

 		
 ChunkedHMLP.training

 		
 Deconvolutional Hypernetwork with Self-Attention Layers

 		
 HDeconv

 		
 HDeconv.distillation_targets()

 		
 HDeconv.forward()

 		
 HDeconv.get_cond_in_emb()

 		
 HDeconv.training

 		
 Hypernetwork-container that wraps a mixture of hypernets

 		
 HContainer

 		
 HContainer.distillation_targets()

 		
 HContainer.forward()

 		
 HContainer.internal_hnets

 		
 HContainer.training

 		
 Helper functions for hypernetworks

 		
 get_conditional_parameters()

 		
 init_chunk_embeddings()

 		
 init_conditional_embeddings()

 		
 Hypernetwork-wrapper for input-preprocessing and output-postprocessing

 		
 HPerturbWrapper

 		
 HPerturbWrapper.distillation_targets()

 		
 HPerturbWrapper.forward()

 		
 HPerturbWrapper.internal_hnet

 		
 HPerturbWrapper.training

 		
 MLP - Hypernetwork

 		
 HMLP

 		
 HMLP.apply_hyperfan_init()

 		
 HMLP.distillation_targets()

 		
 HMLP.forward()

 		
 HMLP.get_cond_in_emb()

 		
 HMLP.training

 		
 Example Instantiations of a Structured Chunked MLP - Hypernetwork

 		
 resnet_chunking()

 		
 wrn_chunking()

 		
 Structured Chunked MLP - Hypernetwork

 		
 StructuredHMLP

 		
 StructuredHMLP.chunk_emb_shapes

 		
 StructuredHMLP.cond_chunk_embs

 		
 StructuredHMLP.distillation_targets()

 		
 StructuredHMLP.forward()

 		
 StructuredHMLP.get_chunk_embs()

 		
 StructuredHMLP.get_cond_in_emb()

 		
 StructuredHMLP.internal_hnets

 		
 StructuredHMLP.num_chunks

 		
 StructuredHMLP.training

 		
 Hyperparameter Search

 		
 A general framework to perform hyperparameter searches on single- and multi-GPU systems

 		
 How to run a hyperparameter search

 		
 Postprocessing

 		
 How to use this framework with your simulation

 		
 Main Networks

 		
 Bidirectional Recurrent Neural Network

 		
 BiRNN

 		
 BiRNN.distillation_targets()

 		
 BiRNN.forward()

 		
 BiRNN.get_cm_weights()

 		
 BiRNN.get_non_cm_weights()

 		
 BiRNN.init_hh_weights_orthogonal()

 		
 BiRNN.num_rec_layers

 		
 BiRNN.preprocess_fct

 		
 BiRNN.training

 		
 BiRNN.use_lstm

 		
 A bio-plausible convolutional network for CIFAR

 		
 BioConvNet

 		
 BioConvNet.distillation_targets()

 		
 BioConvNet.forward()

 		
 BioConvNet.training

 		
 Interface for Classifiers

 		
 Classifier

 		
 Classifier.accuracy()

 		
 Classifier.knowledge_distillation_loss()

 		
 Classifier.logit_cross_entropy_loss()

 		
 Classifier.num_classes

 		
 Classifier.num_hyper_weights()

 		
 Classifier.softmax_and_cross_entropy()

 		
 Classifier.training

 		
 LeNet

 		
 LeNet

 		
 LeNet.distillation_targets()

 		
 LeNet.forward()

 		
 LeNet.training

 		
 Multi-Layer Perceptron

 		
 MLP

 		
 MLP.distillation_targets()

 		
 MLP.forward()

 		
 MLP.training

 		
 MLP.weight_shapes()

 		
 Main-Network Interface

 		
 MainNetInterface

 		
 MainNetInterface.batchnorm_layers

 		
 MainNetInterface.context_mod_layers

 		
 MainNetInterface.custom_init()

 		
 MainNetInterface.distillation_targets()

 		
 MainNetInterface.flatten_params()

 		
 MainNetInterface.forward()

 		
 MainNetInterface.get_output_weight_mask()

 		
 MainNetInterface.has_bias

 		
 MainNetInterface.has_fc_out

 		
 MainNetInterface.has_linear_out

 		
 MainNetInterface.hyper_shapes_distilled

 		
 MainNetInterface.hyper_shapes_learned

 		
 MainNetInterface.hyper_shapes_learned_ref

 		
 MainNetInterface.internal_params

 		
 MainNetInterface.internal_params_ref

 		
 MainNetInterface.layer_bias_vectors

 		
 MainNetInterface.layer_weight_tensors

 		
 MainNetInterface.mask_fc_out

 		
 MainNetInterface.num_internal_params

 		
 MainNetInterface.num_params

 		
 MainNetInterface.overwrite_internal_params()

 		
 MainNetInterface.param_shapes

 		
 MainNetInterface.param_shapes_meta

 		
 MainNetInterface.shapes_to_num_weights()

 		
 MainNetInterface.weights

 		
 ResNet

 		
 ResNet

 		
 ResNet.distillation_targets()

 		
 ResNet.forward()

 		
 ResNet.training

 		
 ResNet for ImageNet

 		
 ResNetIN

 		
 ResNetIN.distillation_targets()

 		
 ResNetIN.forward()

 		
 ResNetIN.get_output_weight_mask()

 		
 ResNetIN.has_bias

 		
 ResNetIN.training

 		
 SimpleRNN

 		
 SimpleRNN

 		
 SimpleRNN.basic_rnn_step()

 		
 SimpleRNN.bptt_depth

 		
 SimpleRNN.compute_basic_rnn_output()

 		
 SimpleRNN.compute_fc_outputs()

 		
 SimpleRNN.compute_hidden_states()

 		
 SimpleRNN.distillation_targets()

 		
 SimpleRNN.forward()

 		
 SimpleRNN.get_cm_inds()

 		
 SimpleRNN.get_cm_weights()

 		
 SimpleRNN.get_non_cm_weights()

 		
 SimpleRNN.get_output_weight_mask()

 		
 SimpleRNN.init_hh_weights_orthogonal()

 		
 SimpleRNN.lstm_rnn_step()

 		
 SimpleRNN.num_rec_layers

 		
 SimpleRNN.split_cm_weights()

 		
 SimpleRNN.split_internal_weights()

 		
 SimpleRNN.split_weights()

 		
 SimpleRNN.training

 		
 SimpleRNN.use_lstm

 		
 Wide-ResNet

 		
 WRN

 		
 WRN.distillation_targets()

 		
 WRN.forward()

 		
 WRN.get_output_weight_mask()

 		
 WRN.has_bias

 		
 WRN.training

 		
 The Convnet used by Zenke et al. for CIFAR-10/100

 		
 ZenkeNet

 		
 ZenkeNet.distillation_targets()

 		
 ZenkeNet.forward()

 		
 ZenkeNet.training

 		
 Utilities

 		
 Batch Normalization

 		
 BatchNormLayer

 		
 BatchNormLayer.checkpoint_stats()

 		
 BatchNormLayer.forward()

 		
 BatchNormLayer.get_stats()

 		
 BatchNormLayer.hyper_shapes

 		
 BatchNormLayer.num_stats

 		
 BatchNormLayer.param_shapes

 		
 BatchNormLayer.training

 		
 BatchNormLayer.weights

 		
 Common command-line arguments

 		
 Important note for contributors

 		
 check_invalid_argument_usage()

 		
 cl_args()

 		
 data_args()

 		
 eval_args()

 		
 gan_args()

 		
 generator_args()

 		
 hnet_args()

 		
 init_args()

 		
 main_net_args()

 		
 miscellaneous_args()

 		
 train_args()

 		
 Context-modulation layer

 		
 ContextModLayer

 		
 ContextModLayer.checkpoint_weights()

 		
 ContextModLayer.forward()

 		
 ContextModLayer.gain_offset_applied

 		
 ContextModLayer.gain_softplus_applied

 		
 ContextModLayer.get_weights()

 		
 ContextModLayer.has_gains

 		
 ContextModLayer.has_shifts

 		
 ContextModLayer.normal_init()

 		
 ContextModLayer.num_ckpts

 		
 ContextModLayer.param_shapes

 		
 ContextModLayer.param_shapes_meta

 		
 ContextModLayer.preprocess_gain()

 		
 ContextModLayer.sparse_init()

 		
 ContextModLayer.training

 		
 ContextModLayer.uniform_init()

 		
 ContextModLayer.weights

 		
 Elastic Weight Consolidation

 		
 compute_fisher()

 		
 context_mod_forward()

 		
 ewc_regularizer()

 		
 Helper functions for training Generative Adversarial Networks

 		
 accuracy()

 		
 concat_mean_stats()

 		
 dis_loss()

 		
 gen_loss()

 		
 Hamiltonian-Monte-Carlo

 		
 HMC

 		
 HMC.acceptance_probability

 		
 HMC.clear_position_trajectory()

 		
 HMC.current_position

 		
 HMC.num_states

 		
 HMC.num_steps

 		
 HMC.position_trajectory

 		
 HMC.simulate_chain()

 		
 HMC.stepsize

 		
 MCMC

 		
 MCMC.acceptance_probability

 		
 MCMC.clear_position_trajectory()

 		
 MCMC.current_position

 		
 MCMC.num_states

 		
 MCMC.position_trajectory

 		
 MCMC.proposal_std

 		
 MCMC.simulate_chain()

 		
 MultiChainHMC

 		
 MultiChainHMC.avg_acceptance_probability

 		
 MultiChainHMC.chains

 		
 MultiChainHMC.num_chains

 		
 MultiChainHMC.simulate_chains()

 		
 NUTS

 		
 NUTS.num_steps

 		
 NUTS.simulate_chain()

 		
 leapfrog()

 		
 log_prob_standard_normal_prior()

 		
 nn_pot_energy()

 		
 Hypernetwork Regularization

 		
 calc_fix_target_reg()

 		
 flatten_and_remove_out_heads()

 		
 get_current_targets()

 		
 Helper functions for weight initialization

 		
 calc_fan_in_and_out()

 		
 xavier_fan_in_()

 		
 2D-convolutional layer without weight sharing

 		
 LocalConv2dLayer

 		
 LocalConv2dLayer.forward()

 		
 LocalConv2dLayer.out_height

 		
 LocalConv2dLayer.out_width

 		
 LocalConv2dLayer.param_shapes

 		
 LocalConv2dLayer.training

 		
 LocalConv2dLayer.weights

 		
 Console/file logging

 		
 config_logger()

 		
 Miscellaneous Utilities

 		
 configure_matplotlib_params()

 		
 get_colorbrewer2_colors()

 		
 get_default_args()

 		
 init_params()

 		
 list_to_str()

 		
 repair_canvas_and_show_fig()

 		
 str_to_act()

 		
 str_to_floats()

 		
 str_to_ints()

 		
 Compute Parameter Changes without Update Steps

 		
 adam_step()

 		
 calc_delta_theta()

 		
 rmsprop_step()

 		
 sgd_step()

 		
 Self-Attention Layer

 		
 SelfAttnLayer

 		
 SelfAttnLayer.forward()

 		
 SelfAttnLayer.training

 		
 SelfAttnLayerV2

 		
 SelfAttnLayerV2.forward()

 		
 SelfAttnLayerV2.training

 		
 SelfAttnLayerV2.weight_shapes

 		
 SelfAttnLayerV2.weights

 		
 Synaptic Intelligence

 		
 si_compute_importance()

 		
 si_post_optim_step()

 		
 si_pre_optim_step()

 		
 si_regularizer()

 		
 General helper functions for simulations

 		
 calc_train_iter()

 		
 get_hypernet()

 		
 get_mnet_model()

 		
 setup_environment()

 		
 Checkpointing PyTorch Models

 		
 get_best_ckpt_path()

 		
 load_checkpoint()

 		
 make_ckpt_list()

 		
 save_checkpoint()

 		
 CutoutTransform

 		
 get_optimizer()

 		
 init_params()

 		
 lambda_lr_schedule()

 		
 Tutorials

 		
 Examples

 		
 Continual learning with hypernetworks

 		
 Usage instructions

 		
 Learning from the example

_images/math/0b92bfe5c0cb1c457a376319ce45f073e6e624ae.png
—1llog 1

_images/math/0cbc9604deaea10e6e8f5702f2215711e97bea42.png
yt

_images/math/0ad7b30534898f253002222f998f38001e604648.png

_images/math/0b8a65f81303d1a9ae4bed695ea414c94a7ee494.png

_images/math/0f76d96ca2da1e168fcadb92e7657a897ee367f2.png

_images/math/105758576e5a78256c5f4909713586ebdf5c67f2.png
1
g = ~log(1 +exp(g - 5))

_images/math/0e737f293729c4135dbc78f453a7c82b3dc68dcd.png
Ly

_images/math/0f2a0c75c4c1cc0bc8da8f39ef822be47fb2b9de.png

_images/math/106b04b320e75010b1d8029e59244f234f75e6f9.png

_images/math/122385cd3238a319f16cf806c8fc4ba35bf40a7c.png

_images/math/13dc89b7b31168910835c028abaec6fea6743145.png

_images/math/143a70aa6d4332790d75857e96863fc975e43bc2.png

_images/math/16cb1e006199f0853a2dc67ea814446a38beb54e.png

_images/math/141bbefb74014fc5e43499901bf78607ae335583.png

_images/math/14357ff9e8ddb464c25d5b0ec8f92e053716a636.png

_images/math/1973d243be1cfabcab1c5db722bc71ea00780cf0.png
'ore step

_images/math/19eef1966f7c545af3ac8c0fa486974d873e3c65.png

_images/math/171615b1108b2fa69cc390a611ff917e009a01dd.png

_images/math/17dee04c8a907d83d62829a220df009fdd856ab1.png
o((Wx+b)® (1+g)+s)

_images/math/bfb944755f3ad48e7742d231616519c0c62331b5.png

_images/math/bf6ea5aaf70f61ff3d9c7be34fe1a82f10134f9d.png
yr € {0, 1}

_images/math/c1801ab0200322e4690419d737b0b00f8bdd4d80.png
fulx,

_images/math/c122e89360c5b524044637c7078a5412ad7b3e8a.png
Wibi) ¢ RExK

_images/math/bbd98fa986a69fba570835f5ca83486e06f87447.png
* — Ejz|

P
/Var[z] + €

_images/math/bbc9cbd9a5d1f55541d15f4e7794daf44b4bfe4f.png

_images/math/bc9652b0071006ba6a16eeb45a594758701b21a6.png
Var(e)

_images/math/bc2c8745fbef9a05addc786a4cb65718655d0cb9.png
"

_images/math/be0173d36f906dbf3e6a87ba24be2f091c783e25.png
-1

NLL = Y (Sle= lcg(wftmaX(f“(va))c) >

en N e

crossentropy loss with 1-hot targets

_images/math/bd105e0f533b33e0f099b96a31d4cb4a8995c304.png
Vi=) wyT;
7

_images/math/be3a941367ce663e45fa7cb55222ee079abd77f2.png

_images/math/1c9a95c9c708028f2d53e43441709b951eeed5bc.png

_images/math/1e197575f2d1e32c6f08ebf0e7ca3a3e1563e519.png
> NeFanp tat =— =AY Fomp

T 'prior T

_images/math/1b5e577d6216dca3af7d87aa122a0b9b360d6cb3.png

_images/math/20726709483d445b05aa8942ba11eb0fa925efa1.png

_images/math/229cf04e5888a4b7150a66bf161da88895a2635b.png

_images/math/1fbee781f84569077719a167b64e12064360fac1.png

_images/math/1fc5ea82e88796ee4643d3081100f7034b332930.png

_images/math/247f624107e1ddad89ca9046c3eb08e50a1a8df2.png

_images/math/22df760b1ce7a8f575166fe94b1cf41a0ac03155.png

_images/math/2380faff4b3e8dad425797bd143a4091b00991e9.png
F(z) = Var[Vglogply | 0,2)]
=E,00)[Velogply | 8,2)Ve logply | 8, 2)7]

_images/math/b9a32b2bf9cce1c4e44506e374c0cd182ae02873.png
1]2) = plz | ye = Dplye = 1)
_pla)
N (23 pe, T)

K N (@,)

plye =

_images/math/badad346f6fbe2e237af99bfbd9a93a4da53a3da.png

_images/math/b9faca736ee1519377602fd931f3304bef038605.png

_images/math/b052fb113dfed2e5117c9dd61ca9457acbdeb84e.png

_images/math/b1c20065aba869e11443434aa44018b01c95245d.png

_images/math/b08945deed21e7c060d4af89944f4d82628dbf8d.png
flx;.h;_1.0)

_images/math/b43cfaa29077b21366299e3c09a9dd7d8a853113.png

_images/math/b3b353639b532ffa92ad02092dd562f15be21dc6.png

_images/math/b52df27bfb0b1e3af0c2c68a7b9da459178c2a7d.png

_images/math/b4839477db6e6e21e8d310bbc6b09b089e9fb23e.png

_images/math/b74f469e55333522c48ad9ef8fc4ad07e2bc3483.png

_images/math/b5da0f946d25c17365950fdcf3be7aa7848961ad.png
o((Wx+b)Og+ s

_images/math/b78866ad8121e7899f8e6eaec8f39eff92bc2cff.png

_images/math/a9715cca151a91f90cae46e565a4cc7f44dbc279.png
h (e, c)

_images/math/a834636a5c33ed517a77ca3709558f0819cc2190.png

_images/math/aa5b0210d2a2e2c3176f95bfd9f604bafdd6bf2a.png
(p, o)

_images/math/a9addb11bf7c1d1845a6f987bc013d51127c7e7e.png

_images/math/acbe9cb022e4efa991dc6600d625273da57f4075.png
bp. by, b'F) = 0

_images/math/abf8d6b6c439ace56942ac015957d97f2df4e664.png

_images/math/ae4164543b88f1d5bbdd19270be3ca2858f1798c.png
hy, € Kb

_images/math/ae0751eb69df914adaa2b196f40dca12349115b2.png

_images/math/b04f62e21c4cd0ae0183708ab43bd04d6a0579f7.png

_images/math/aeb2b0c3c9e388ef87ec1db36ba0490911450b09.png
(Y5

