
hypnettorch
Release 1.0

Christian Henning, Maria R. Cervera

Sep 07, 2023

CONTENTS:

1 Custom data handlers for common ML datasets 1

2 Hypernetworks 69

3 Hyperparameter Searches 103

4 Main Networks 113

5 Utilities and helper functions 153

6 Tutorials on how to use hypernetworks in PyTorch 207

7 Example implementations that use hypnettorch 209

8 Installation 213

9 Usage 215

10 Indices and tables 217

Bibliography 219

Python Module Index 221

Index 223

i

ii

CHAPTER

ONE

CUSTOM DATA HANDLERS FOR COMMON ML DATASETS

Contents

• Custom data handlers for common ML datasets

– Preparation of datasets

∗ Large-scale CelebFaces Attributes (CelebA) Dataset

∗ Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

∗ Udacity Steering Angle Prediction

– API

∗ Dataset Interface

∗ Wrapper for large image datasets

∗ Wrapper for sequential datasets

∗ CelebA Dataset

∗ CIFAR-10 Dataset

∗ CIFAR-100 Dataset

∗ CUB-200-2011 Dataset

∗ Fashion-MNIST Dataset

∗ ILSVRC2012 Dataset

∗ MNIST Dataset

∗ Street View House Numbers (SVHN) Dataset

∗ Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

– Sequential, custom and special datasets

This folder contains data loaders for common datasets. Note, the code in this folder is a derivative of the dataloaders
developed in this repo. For examples on how to use these data loaders with Tensorflow checkout the original code.

All dataloaders are derived from the abstract base class hypnettorch.data.dataset.Dataset to provide a common
API to the user.

1

https://github.com/chrhenning/ann_implementations/tree/master/src/data
https://github.com/chrhenning/ann_implementations

hypnettorch, Release 1.0

1.1 Preparation of datasets

Datasets not mentioned in this section will be automatically downloaded and processed.

Here you can find instructions about how to prepare some of the datasets for automatic processing.

1.1.1 Large-scale CelebFaces Attributes (CelebA) Dataset

CelebA is a dataset with over 200K celebrity images. It can be downloaded from here.

Google Drive will split the dataset into multiple zip-files. In the following, we explain, how you can extract these files
on Linux. To decompress the sharded zip files, simply open a terminal, move to the downloaded zip-files and enter:

$ unzip '*.zip'

This will create a local folder named CelebA.

Afterwards move into the Img subfolder:

$ cd ./CelebA/Img/

You can now decide, whether you want to use the JPG or PNG encoded images.

For the jpeg images, you have to enter:

$ unzip img_align_celeba.zip

This will create a folder img_align_celeba, containing all images in jpeg format.

To save space on your local machine, you may delete the zip file via rm img_align_celeba.zip.

The same images are also available in png format. To extract these, you have to move in the corresponding subdirectory
via cd img_align_celeba_png.7z. You can now extract the sharded 7z files by entering:

$ 7z e img_align_celeba_png.7z.001

Again, you may now delete the archives to save space via rm img_align_celeba_png.7z.0*.

You can proceed similarly if you want to work with the original images located in the folder img_celeba.7z.

FYI, there are scripts available (e.g., here), that can be used to download the dataset.

1.1.2 Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

The ILSVRC2012 dataset is a subset of the ImageNet dataset and contains over 1.2 Mio. training images depicting
natural image scenes of 1,000 object classes. The dataset can be downloaded here here.

For our program to be able to use the dataset, it has to be prepared as described here.

In the following, we recapitulate the required steps (which are executed from the directory in which the dataset has
been loaded to).

1. Download the training and validation images as well as the development kit for task 1 & 2.

2. Extract the training data.

2 Chapter 1. Custom data handlers for common ML datasets

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://drive.google.com/open?id=0B7EVK8r0v71pWEZsZE9oNnFzTm8
https://github.com/carpedm20/DCGAN-tensorflow/blob/master/download.py
http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset
http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_devkit_t12.tar.gz

hypnettorch, Release 1.0

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "$
→˓{NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..

Note, this step deletes the the downloaded tar-file. If this behavior is not desired replace the command rm
-f ILSVRC2012_img_train.tar with mv ILSVRC2012_img_train.tar ...

3. Extract the validation data and move images to subfolders.

mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_
→˓val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/
→˓valprep.sh | bash
cd ..

This step ensures that the validation samples are grouped in the same folder structure as the training samples,
i.e., validation images are stored under their corresponding WordNet ID (WNID).

4. Extract the meta data:

mkdir meta && mv ILSVRC2012_devkit_t12.tar.gz meta/ && cd meta && tar -xvzf␣
→˓ILSVRC2012_devkit_t12.tar.gz --strip 1
cd ..

1.1.3 Udacity Steering Angle Prediction

The CH2 steering angle prediction dataset from Udacity can be downloaded here. In the following, we quickly explain
how we expect the downloads to be preprocessed for our datahandler to work.

You may first decompress the files, after which you should have two subfolders Ch2_001 (for the test data) and
``Ch2_002 (for the training data). You may replace the file Ch2_001/HMB_3_release.bag with the complete test
set Ch2_001/HMB_3.bag.

We use this docker tool to extract the information from the Bag files and align the steering information with the recorded
images.

Simply clone the repository and execute the ./build.sh. This issue helped us to overcome an error during the build.

Afterwards, the bagfiles can be extracted using (note, that in- and output directory must be specified using absolute
paths), for instance

sudo ./run-bagdump.sh -i /data/udacity/Ch2_001/ -o /data/udacity/Ch2_001/

and

sudo ./run-bagdump.sh -i /data/udacity/Ch2_002/ -o /data/udacity/Ch2_002/

The data handler only requires the center/ folder and the file interpolated.csv. All remaining extracted data (for
instance, left and right camera images) can be deleted.

Alternatively, the dataset can be downloaded from here. This dataset appears to contain images recorded a month
before the official Challenge 2 dataset was recorded. We could not find any information whether the experimental
conditions are identical (e.g., whether steering angles are directly comparable). Additionally, the dataset appears to
contain situations like parking, where the vehicle doesn’t move and there is no road ahead. Anyway, if desired, the

1.1. Preparation of datasets 3

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/rwightman/udacity-driving-reader
https://github.com/rwightman/udacity-driving-reader/issues/24
https://academictorrents.com/details/5ac7e6d434aade126696666417e3b9ed5d078f1c

hypnettorch, Release 1.0

dataset can be processed similarly to the above mentioned. One may first want to filter the bag file, to only keep
information relevant for the task at hand, e.g.:

rosbag filter dataset-2-2.bag dataset-2-2_filtered.bag "topic == '/center_camera/image_
→˓color' or topic == '/vehicle/steering_report'"

The bag file can be extracted in to center/ folder and a file interpolated.csv as described above, using ./
run-bagdump.sh.

1.2 API

1.2.1 Dataset Interface

The module data.dataset contains a template for a dataset interface, that can be used to feed data into neural net-
works.

The implementation is based on an earlier implementation of a class I used in another project:

https://git.io/fN1a6

At the moment, the class holds all data in memory and is therefore not meant for bigger datasets. Though, it is
easy to design wrappers that overcome this limitation (e.g., see abstract base class data.large_img_dataset.
LargeImgDataset).

4 Chapter 1. Custom data handlers for common ML datasets

https://git.io/fN1a6

hypnettorch, Release 1.0

hypnettorch.data.dataset.Dataset.
get_test_ids()

Get unique identifiers all test samples.

hypnettorch.data.dataset.Dataset.
get_train_ids()

Get unique identifiers all training samples.

hypnettorch.data.dataset.Dataset.
get_val_ids()

Get unique identifiers all validation samples.

hypnettorch.data.dataset.Dataset.
get_test_inputs()

Get the inputs of all test samples.

hypnettorch.data.dataset.Dataset.
get_test_outputs([...])

Get the outputs (targets) of all test samples.

hypnettorch.data.dataset.Dataset.
get_train_inputs()

Get the inputs of all training samples.

hypnettorch.data.dataset.Dataset.
get_train_outputs([...])

Get the outputs (targets) of all training samples.

hypnettorch.data.dataset.Dataset.
get_val_inputs()

Get the inputs of all validation samples.

hypnettorch.data.dataset.Dataset.
get_val_outputs([...])

Get the outputs (targets) of all validation samples.

hypnettorch.data.dataset.Dataset.
input_to_torch_tensor(x, ...)

This method can be used to map the internal numpy ar-
rays to PyTorch tensors.

hypnettorch.data.dataset.Dataset.
is_image_dataset()

Are input (resp.

hypnettorch.data.dataset.Dataset.
next_test_batch (...)

Return the next random test batch.

hypnettorch.data.dataset.Dataset.
next_train_batch (...)

Return the next random training batch.

hypnettorch.data.dataset.Dataset.
next_val_batch (...)

Return the next random validation batch.

hypnettorch.data.dataset.Dataset.
test_iterator(...)

A generator to loop over the test set.

hypnettorch.data.dataset.Dataset.
train_iterator(...)

A generator to loop over the training set.

hypnettorch.data.dataset.Dataset.
val_iterator(...)

A generator to loop over the validation set.

hypnettorch.data.dataset.Dataset.
output_to_torch_tensor(y, ...)

Similar to method input_to_torch_tensor(), just
for dataset outputs.

hypnettorch.data.dataset.Dataset.
plot_samples(...)

Plot samples belonging to this dataset.

hypnettorch.data.dataset.Dataset.
reset_batch_generator([...])

The batch generation possesses a memory.

hypnettorch.data.dataset.Dataset.
tf_input_map([mode])

This method should be used by the map function of
the Tensorflow Dataset interface (tf.data.Dataset.
map).

hypnettorch.data.dataset.Dataset.
tf_output_map([mode])

Similar to method tf_input_map(), just for dataset
outputs.

hypnettorch.data.dataset.Dataset.
test_ids_to_indices(...)

Translate an array of test sample identifiers to test in-
dices.

hypnettorch.data.dataset.Dataset.
train_ids_to_indices(...)

Translate an array of training sample identifiers to train-
ing indices.

hypnettorch.data.dataset.Dataset.
val_ids_to_indices(...)

Translate an array of validation sample identifiers to val-
idation indices.

class hypnettorch.data.dataset.Dataset

1.2. API 5

hypnettorch, Release 1.0

Bases: ABC

A general dataset template that can be used as a simple and consistent interface. Note, that this is an abstract
class that should not be instantiated.

In order to write an interface for another dataset, you have to implement an inherited class. You must always call
the constructor of this base class first when instantiating the implemented subclass.

Note, the internals are stored in the private member _data, that is described in the constructor.

property classification

Whether the dataset is a classification or regression dataset.

Type
bool

abstract get_identifier()

Returns the name of the dataset.

Returns
The dataset its (unique) identifier.

Return type
(str)

get_test_ids()

Get unique identifiers all test samples.

See documentation of method get_train_ids() for details.

Returns
A 1D numpy array.

Return type
(numpy.ndarray)

get_test_inputs()

Get the inputs of all test samples.

See documentation of method get_train_inputs() for details.

Returns
A 2D numpy array.

Return type
(numpy.ndarray)

get_test_outputs(use_one_hot=None)
Get the outputs (targets) of all test samples.

See documentation of method get_train_outputs() for details.

Parameters
(....) – See docstring of method get_train_outputs().

Returns
A 2D numpy array.

Return type
(numpy.ndarray)

6 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

get_train_ids()

Get unique identifiers all training samples.

Each sample in the dataset has a unique identifier (independent of the dataset split it is assigned to).

Note: Sample identifiers do not correspond to the indices of samples within a dataset split (i.e.,
the returned identifiers of this method cannot be used as indices for the returned arrays of methods
get_train_inputs() and get_train_outputs())

Returns
A 1D numpy array containing the unique identifiers for all training samples.

Return type
(numpy.ndarray)

get_train_inputs()

Get the inputs of all training samples.

Note, that each sample is encoded as a single vector. One may use the attribute in_shape to decode the
actual shape of an input sample.

Returns
A 2D numpy array, where each row encodes a training sample.

Return type
(numpy.ndarray)

get_train_outputs(use_one_hot=None)
Get the outputs (targets) of all training samples.

Note, that each sample is encoded as a single vector. One may use the attribute out_shape to decode the
actual shape of an output sample. Keep in mind, that classification samples might be one-hot encoded.

Parameters
use_one_hot (bool) – For classification samples, the encoding of the returned samples can
be either “one-hot” or “class index”. This option is ignored for datasets other than classifica-
tion sets. If None, the dataset its default encoding is returned.

Returns
A 2D numpy array, where each row encodes a training target.

Return type
(numpy.ndarray)

get_val_ids()

Get unique identifiers all validation samples.

See documentation of method get_train_ids() for details.

Returns
A 1D numpy array. Returns None if no validation set exists.

Return type
(numpy.ndarray)

get_val_inputs()

Get the inputs of all validation samples.

See documentation of method get_train_inputs() for details.

1.2. API 7

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

Returns
A 2D numpy array. Returns None if no validation set exists.

Return type
(numpy.ndarray)

get_val_outputs(use_one_hot=None)
Get the outputs (targets) of all validation samples.

See documentation of method get_train_outputs() for details.

Parameters
(....) – See docstring of method get_train_outputs().

Returns
A 2D numpy array. Returns None if no validation set exists.

Return type
(numpy.ndarray)

property in_shape

The original shape of an input sample.

Note, that samples are encoded by this class as individual vectors (e.g., an MNIST sample is ancoded
as 784 dimensional vector, but its original shape is: [28, 28, 1]). A sequential sample is encoded by
concatenating all timeframes. Hence, the number of timesteps can be decoded by dividing a single sample
vector by np.prod(in_shape).

Type
list

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, subclasses might overwrite this method and add data preprocessing/ augmentation.

Parameters

• x (numpy.ndarray) – A 2D numpy array, containing inputs as provided by this dataset.

• device (torch.device or int) – The PyTorch device onto which the input should be
mapped.

• mode (str) – See docstring of method tf_input_map(). Valid values are: train and
inference.

• force_no_preprocessing (bool) – In case preprocessing is applied to the inputs (e.g.,
normalization or random flips/crops), this option can be used to prohibit any kind of ma-
nipulation. Hence, the inputs are transformed into PyTorch tensors on an “as is” basis.

• sample_ids (numpy.ndarray) – See method train_ids_to_indices(). Instantiation
of this class might make use of this information, for instance in order to reduce the amount
of zero padding within a mini-batch.

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

is_image_dataset()

Are input (resp. output) samples images?

Note, for sequence datasets, this method just returns whether a single frame encodes an image.

8 Chapter 1. Custom data handlers for common ML datasets

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensor_attributes.html#torch.device
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Returns

Tuple containing two booleans:

• input_is_img

• output_is_img

Return type
(tuple)

property is_one_hot

Whether output labels are one-hot encoded for a classification task (None otherwise).

Type
bool or None

next_test_batch(batch_size, use_one_hot=None, return_ids=False)
Return the next random test batch.

See documentation of method next_train_batch() for details.

Parameters
(....) – See docstring of method next_train_batch().

Returns

List containing the following 2D numpy arrays:

• batch_inputs

• batch_outputs

• batch_ids (optional)

Return type
(list)

next_train_batch(batch_size, use_one_hot=None, return_ids=False)
Return the next random training batch.

If the behavior of this method should be reproducible, please define a numpy random seed.

Parameters

• (....) – See docstring of method get_train_outputs().

• batch_size (int) – The size of the returned batch.

• return_ids (bool) – If True, a third value will be returned that is a 1D numpy array
containing sample identifiers.

Note: Those integer values are internal unique sample identifiers and in general do not
correspond to indices within the corresponding dataset split (i.e., the training split in this
case).

Returns

List containing the following 2D numpy arrays:

• batch_inputs: The inputs of the samples belonging to the batch.

• batch_outputs: The outputs of the samples belonging to the batch.

• batch_ids (optional): See option return_ident.

1.2. API 9

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Return type
(list)

next_val_batch(batch_size, use_one_hot=None, return_ids=False)
Return the next random validation batch.

See documentation of method next_train_batch() for details.

Parameters
(....) – See docstring of method next_train_batch().

Returns

List containing the following 2D numpy arrays:

• batch_inputs

• batch_outputs

• batch_ids (optional)

Returns None if no validation set exists.

Return type
(list)

property num_classes

The number of classes for a classification task (None otherwise).

Type
int or None

property num_test_samples

The number of test samples.

Type
int

property num_train_samples

The number of training samples.

Type
int

property num_val_samples

The number of validation samples.

Type
int

property out_shape

The original shape of an output sample (see in_shape).

Type
list

output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
Similar to method input_to_torch_tensor(), just for dataset outputs.

Note, in this default implementation, it is also does not perform any data preprocessing.

Parameters
(....) – See docstring of method input_to_torch_tensor().

10 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Returns
The given output y as PyTorch tensor.

Return type
(torch.Tensor)

plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True,
filename=None, interactive=False, figsize=(10, 6), **kwargs)

Plot samples belonging to this dataset. Each sample will be plotted in its own subplot.

Parameters

• title (str) – The title of the whole figure.

• inputs (numpy.ndarray) – A 2D numpy array, where each row is an input sample.

• outputs (numpy.ndarray, optional) – A 2D numpy array of actual dataset targets.

• predictions (numpy.ndarray, optional) – A 2D numpy array of predicted output
samples (i.e., output predicted by a neural network).

• num_samples_per_row (int) – Maximum number of samples plotted per row in the gen-
erated figure.

• show (bool) – Whether the plot should be shown.

• filename (str, optional) – If provided, the figure will be stored under this filename.

• interactive (bool) – Turn on interactive mode. We mainly use this option to ensure that
the program will run in background while figure is displayed. The figure will be displayed
until another one is displayed, the user closes it or the program has terminated. If this
option is deactivated, the program will freeze until the user closes the figure. Note, if using
the iPython inline backend, this option has no effect.

• figsize (tuple) – A tuple, determining the size of the figure in inches.

• **kwargs (optional) – Optional keyword arguments that can be dataset dependent.

reset_batch_generator(train=True, test=True, val=True)
The batch generation possesses a memory. Hence, the samples returned depend on how many samples
already have been retrieved via the next- batch functions (e.g., next_train_batch()). This method can
be used to reset these generators.

Parameters

• train (bool) – If True, the generator for next_train_batch() is reset.

• test (bool) – If True, the generator for next_test_batch() is reset.

• val (bool) – If True, the generator for next_val_batch() is reset, if a validation set
exists.

property sequence

Whether the dataset contains sequences (samples have temporal structure). In case of a sequential dataset,
the temporal structure can be decoded via the shape attributes of in- and outputs. Note, that all samples are
internally zero-padded to the same length.

Type
bool

property shuffle_test_samples

Whether the method next_test_batch() returns test samples in random order at every epoch. Defaults
to True, i.e., samples have a random ordering every epoch.

1.2. API 11

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Type
bool

Setter
Note, setting this attribute will reset the current batch generator, such that the next call to the
method next_test_batch() results in starting a sweep through a new epoch (full batch).

property shuffle_val_samples

Same as shuffle_test_samples for samples from the validation set.

Type
bool

test_ids_to_indices(sample_ids)
Translate an array of test sample identifiers to test indices.

See documentation of method train_ids_to_indices() for details.

Parameters
(....) – See docstring of method train_ids_to_indices().

Returns
A 1D numpy array.

Return type
(numpy.ndarray)

test_iterator(batch_size, return_remainder=True, **kwargs)
A generator to loop over the test set.

See documentation of method train_iterator().

Parameters
(....) – See docstring of method train_iterator().

Yields
(list) – The same list that would be returned by method next_test_batch() but additionally
prepended with the batch size.

tf_input_map(mode='inference')
This method should be used by the map function of the Tensorflow Dataset interface (tf.data.Dataset.
map). In the default case, this is just an identity map, as the data is already in memory.

There might be cases, in which the full dataset is too large for the working memory, and therefore the data
currently needed by Tensorflow has to be loaded from disk. This function should be used as an interface
for this process.

Parameters
mode (str) – Is the data needed for training or inference? This distinction is important, as
it might change the way the data is processed (e.g., special random data augmentation might
apply during training but not during inference. The parameter is a string with the valid values
being train and inference.

Returns
A function handle, that maps the given input tensor to the preprocessed input tensor.

Return type
(function)

12 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

tf_output_map(mode='inference')
Similar to method tf_input_map(), just for dataset outputs.

Note, in this default implementation, it is also just an identity map.

Parameters
(....) – See docstring of method tf_input_map().

Returns
A function handle.

Return type
(function)

train_ids_to_indices(sample_ids)
Translate an array of training sample identifiers to training indices.

This method translates unique training identifiers (see method get_train_ids()) to actual training in-
dices, that can be used to index the training set.

Parameters
sample_ids (numpy.ndarray) – 1D numpy array of unique sample IDs (e.g., those returned
when using option return_ids of method next_train_batch()).

Returns
A 1D array of training indices that has the same length as sample_ids.

Return type
(numpy.ndarray)

train_iterator(batch_size, return_remainder=True, **kwargs)
A generator to loop over the training set.

This generator yields the return value of next_train_batch() prepended with the current batch size.

Example

for batch_size, x, y in data.train_iterator(32):
x_t = data.input_to_torch_tensor(x, device, mode='train')
y_t = data.output_to_torch_tensor(y, device, mode='train')

...

for batch_size, x, y, ids in data.train_iterator(32, \
return_ids=True):

x_t = data.input_to_torch_tensor(x, device, mode='train')
y_t = data.output_to_torch_tensor(y, device, mode='train')

...

Note: This method will only temporarily modify the internal batch generator (see method
reset_batch_generator()) until the epoch is completed.

Parameters

1.2. API 13

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

• batch_size (int) – The batch size used.

Note: If batch_size is not an integer divider of num_train_samples, then the last
yielded batch will be smaller if return_remainder is True.

• return_remainder (bool) – The last batch might have to be smaller if batch_size is
not an integer divider of num_train_samples. If this attribute is False, this last part is
not yielded and all batches have the same size.

Note: If return_remainder is se tto False, then it may be that not all training samples
are yielded.

• **kwargs – Keyword arguments that are passed to method next_train_batch().

Yields
(list) – The same list that would be returned by method next_train_batch() but addition-
ally prepended with the batch size.

val_ids_to_indices(sample_ids)
Translate an array of validation sample identifiers to validation indices.

See documentation of method train_ids_to_indices() for details.

Parameters
(....) – See docstring of method train_ids_to_indices().

Returns
A 1D numpy array.

Return type
(numpy.ndarray)

val_iterator(batch_size, return_remainder=True, **kwargs)
A generator to loop over the validation set.

See documentation of method train_iterator().

Parameters
(....) – See docstring of method train_iterator().

Yields
(list) – The same list that would be returned by method next_val_batch() but additionally
prepended with the batch size.

1.2.2 Wrapper for large image datasets

The module data.large_img_dataset contains an abstract wrapper for large datasets, that have images as inputs.
Typically, these datasets are too large to be loaded into memory. Though, their outputs (labels) can still easily be hold
in memory. Hence, the idea is, that instead of loading the actual images, we load the paths for each image into memory.
Then we can load the images from disk as needed.

To sum up, handlers that implement this interface will hold the outputs and paths for the input images of the whole
dataset in memory, but not the actual images.

As an alternative, one can implement wrappers for HDF5 and TFRecord files.

Here is a simple example that illustrates the format of the dataset:

14 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

https://www.tensorflow.org/guide/datasets#decoding_image_data_and_resizing_it

In case of working with PyTorch, rather than using the internal methods for batch processing (such as data.
dataset.Dataset.next_train_batch()) one should adapt PyTorch its data processing utilities (consisting of
torch.utils.data.Dataset and torch.utils.data.DataLoader) in combination with class attributes such as
data.large_img_dataset.LargeImgDataset.torch_train.

class hypnettorch.data.large_img_dataset.LargeImgDataset(imgs_path, png_format=False)
Bases: Dataset

A general dataset template for datasets with images as inputs, that are locally stored as individual files. Note,
that this is an abstract class that should not be instantiated.

Hints, when implementing the interface:

• Attribute data.dataset.Dataset.in_shape still has to be correctly implemented, independent of the
fact, that the actual input data is a list of strings.

Parameters

• imgs_path (str) – The path to the folder, containing the image files (the actual image paths
contained in the input data (see e.g., data.dataset.Dataset.get_train_inputs())
will be concatenated to this path).

• png_format (bool) – The images are typically assumed to be jpeg encoded. You may
change this to png enocded images.

get_test_inputs()

Get the inputs of all test samples.

Returns
An np.chararray, where each row corresponds to an image file name.

Return type
(numpy.chararray)

get_train_inputs()

Get the inputs of all training samples.

Returns
An np.chararray, where each row corresponds to an image file name.

Return type
(numpy.chararray)

get_val_inputs()

Get the inputs of all validation samples.

Returns
An np.chararray, where each row corresponds to an image file name. If no validation set
exists, None will be returned.

Return type
(numpy.chararray)

property imgs_path

The base path of all images.

Type
str

1.2. API 15

https://www.tensorflow.org/guide/datasets#decoding_image_data_and_resizing_it
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray
https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray
https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
Note, this method has been overwritten from the base class. It should not be used for large image datasets.
Instead, the class should provide instances of class torch.utils.data.Dataset for training, validation
and test set:

• torch_train

• torch_test

• torch_val

property png_format_used

Whether png or jped encoding of images is assumed.

Type
bool

read_images(inputs)
For the given filenames, read and return the images.

Parameters
inputs (numpy.chararray) – An np.chararray of filenames.

Returns
A 2D numpy array, where each row contains a picture.

Return type
(numpy.ndarray)

tf_input_map(mode='inference')
Note, this method has been overwritten from the base class.

It provides a function handle that loads images from file, resizes them to match the internal input image
size and then flattens the image to a vector.

Parameters
(....) – See docstring of method data.dataset.Dataset.tf_input_map().

Returns
A function handle, that maps the given input tensor to the preprocessed input tensor.

Return type
(function)

property torch_test

The PyTorch compatible test dataset.

Type
torch.utils.data.Dataset

property torch_train

The PyTorch compatible training dataset.

Type
torch.utils.data.Dataset

property torch_val

The PyTorch compatible validation dataset.

Type
torch.utils.data.Dataset

16 Chapter 1. Custom data handlers for common ML datasets

https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.chararray.html#numpy.chararray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset

hypnettorch, Release 1.0

1.2.3 Wrapper for sequential datasets

The module data.sequential_dataset contains an abstract wrapper for datasets containing sequential data.

Even though the dataset interface data.dataset.Dataset contains basic support for sequential datasets, this wrap-
per was considered necessary to increase the convinience when working with sequential datasets (especially, if those
datasets contain sequences of varying lengths).

class hypnettorch.data.sequential_dataset.SequentialDataset

Bases: Dataset

A general wrapper for datasets with sequential inputs and outpus.

get_in_seq_lengths(sample_ids)
Get the unpadded input sequence lengths for given samples.

Parameters
sample_ids (numpy.ndarray) – A 1D numpy array of unique sample identifiers.
Please see documentation of option return_ids of method data.dataset.Dataset.
next_train_batch() as well as method data.dataset.Dataset.get_train_ids()
for more information of sample identifiers.

Returns
A 1D array of the same length as sample_ids containing the unpadded input sequence
lengths of these samples.

Return type
(numpy.ndarray)

get_out_seq_lengths(sample_ids)
Get the unpadded output sequence lengths for given samples.

See documentation of method get_in_seq_lengths().

Parameters
(....) – See docstring of method get_in_seq_lengths().

Returns
A 1D numpy array.

Return type
(numpy.ndarray)

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor. It has dimensions [T, B, *in_shape], where T is
the number of time steps (see attribute max_num_ts_in), B is the batch size and in_shape
refers to the input feature shape, see data.dataset.Dataset.in_shape.

Return type
(torch.Tensor)

property max_num_ts_in

The maximum number of timesteps input sequences may have.

1.2. API 17

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Note: Internally, all input sequences are stored according to this length using zero-padding.

Type
int

property max_num_ts_out

The maximum number of timesteps output sequences may have.

Note: Internally, all input sequences are stored according to this length using zero-padding.

Type
int

output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
Similar to method input_to_torch_tensor(), just for dataset outputs.

Parameters
(....) – See docstring of method data.dataset.Dataset.
output_to_torch_tensor().

Returns
The given input x as PyTorch tensor. It has dimensions [T, B, *out_shape], where T is
the number of time steps (see attribute max_num_ts_out), B is the batch size and out_shape
refers to the output feature shape, see data.dataset.Dataset.out_shape.

Return type
(torch.Tensor)

1.2.4 CelebA Dataset

The module data.celeba_data contains a handler for the CelebA dataset.

More information about the dataset can be retrieved from:
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Note, in the current implementation, this handler will not download and extract the dataset for you. You have to do this
manually by following the instructions of the README file (which is located in the same folder as this file).

Note, this dataset has not yet been prepared for PyTorch use!

class hypnettorch.data.celeba_data.CelebAData(data_path, use_png=False, shape=None)
Bases: LargeImgDataset

An instance of the class shall represent the CelebA dataset.

The input data of the dataset will be strings to image files. The output data will be vectors of booleans, denoting
whether a certain type of attribute is present in the picture.

Note: The dataset has to be already downloaded and extracted before this class can be instantiated. See the
local README file for details.

Parameters

18 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

hypnettorch, Release 1.0

• data_path (str) – Where should the dataset be read from?

• use_png (bool) – Whether the png rather than the jpeg images should be used. Note, this
class only considers the aligned and cropped images.

• shape (optional) – If given, this images loaded from disk will be reshaped to that shape.

get_attribute_names()

Get the names of the different attributes classified by this dataset.

Returns
A list of attributes. The order of the list will have the same order as the output labels.

Return type
(list)

get_identifier()

Returns the name of the dataset.

1.2.5 CIFAR-10 Dataset

The module data.cifar10_data contains a handler for the CIFAR 10 dataset.

The dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training
images and 10000 test images.

Information about the dataset can be retrieved from:
https://www.cs.toronto.edu/~kriz/cifar.html

class hypnettorch.data.cifar10_data.CIFAR10Data(data_path, use_one_hot=False,
use_data_augmentation=False,
validation_size=5000, use_cutout=False)

Bases: Dataset

An instance of the class shall represent the CIFAR-10 dataset.

Note, the constructor does not safe a data dump (via pickle) as, for instance, the MNIST data handler (data.
mnist_data.MNISTData) does. The reason is, that the downloaded files are already in a nice to read format,
such that the time saved to read the file from a dump file is minimal.

Note: By default, input samples are provided in a range of [0, 1].

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• use_data_augmentation (bool) – Note, this option currently only applies to input batches
that are transformed using the class member input_to_torch_tensor() (hence, only
available for PyTorch, so far).

Note: If activated, the statistics of test samples are changed as a normalization is applied.

1.2. API 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_cutout (bool) – Whether option apply_cutout should be set of method
torch_input_transforms(). We use cutouts of size 16 x 16 as recommended here.

Note: Only applies if use_data_augmentation is set.

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled. Preprocessing involves normalization
and (for training mode) random perturbations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

plot_sample(image, label=None, figsize=1.5, interactive=False, file_name=None)
Plot a single CIFAR-10 sample.

This method is thought to be helpful for evaluation and debugging purposes.

Deprecated since version 1.0: Please use method data.dataset.Dataset.plot_samples() instead.

Parameters

• image – A single CIFAR-10 image (given as 1D vector).

• label – The label of the given image.

• figsize – The height and width of the displayed image.

• interactive – Turn on interactive mode. Thus program will run in background while
figure is displayed. The figure will be displayed until another one is displayed, the user
closes it or the program has terminated. If this option is deactivated, the program will
freeze until the user closes the figure.

• file_name – (optional) If a file name is provided, then the image will be written into a file
instead of plotted to the screen.

static torch_augment_images(x, device, transform, img_shape=[32, 32, 3])
Augment CIFAR-10 images using a given PyTorch transformation.

Parameters

• x (numpy.ndarray) – A 2D-Numpy array containing CIFAR-10 images.

• device (torch.device or int) – The PyTorch device on which the resulting tensor
should be.

20 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/pdf/1708.04552.pdf
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensor_attributes.html#torch.device
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• transform – A torchvision.transforms method to modify the data.

Returns
The augmented images as PyTorch tensor.

Return type
(torch.Tensor)

static torch_input_transforms(apply_rand_hflips=True, apply_cutout=False, cutout_length=16,
cutout_n_holes=1)

Get data augmentation pipelines for CIFAR-10 inputs.

Note, the augmentation is inspired by the augmentation proposed in:
https://www.aiworkbox.com/lessons/augment-the-cifar10-dataset-using-the-randomhorizontalflip-and-randomcrop-transforms

Note: We use the same data augmentation pipeline for CIFAR-100, as the images are very similar. Here
is an example where they use slightly different normalization values, but we ignore this for now: https:
//zhenye-na.github.io/2018/10/07/pytorch-resnet-cifar100.html

Parameters

• apply_rand_hflips (bool) – Apply random horizontal flips during training.

• apply_cutout (bool) – Whether the cutout transformation should be applied to training
inputs (see class utils.torch_utils.CutoutTransform).

• cutout_length (int) – If apply_cutout is True, then this will be passed as constructor
argument length to class utils.torch_utils.CutoutTransform.

• cutout_n_holes (int) – If apply_cutout is True, then this will be passed as construc-
tor argument n_holes to class utils.torch_utils.CutoutTransform.

Returns

Tuple containing:

• train_transform: A transforms pipeline that applies random transformations and normal-
izes the image.

• test_transform: Similar to train_transform, but no random transformations are applied.

Return type
(tuple)

1.2.6 CIFAR-100 Dataset

The module data.cifar100_data contains a handler for the CIFAR 100 dataset.

The dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class. There are 50000 training
images and 10000 test images.

Information about the dataset can be retrieved from:
https://www.cs.toronto.edu/~kriz/cifar.html

class hypnettorch.data.cifar100_data.CIFAR100Data(data_path, use_one_hot=False,
use_data_augmentation=False,
validation_size=5000, use_cutout=False)

1.2. API 21

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://www.aiworkbox.com/lessons/augment-the-cifar10-dataset-using-the-randomhorizontalflip-and-randomcrop-transforms
https://zhenye-na.github.io/2018/10/07/pytorch-resnet-cifar100.html
https://zhenye-na.github.io/2018/10/07/pytorch-resnet-cifar100.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://www.cs.toronto.edu/~kriz/cifar.html

hypnettorch, Release 1.0

Bases: Dataset

An instance of the class shall represent the CIFAR-100 dataset.

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• use_data_augmentation (bool) – Note, this option currently only applies to input batches
that are transformed using the class member input_to_torch_tensor() (hence, only
available for PyTorch, so far).

Note: If activated, the statistics of test samples are changed as a normalization is applied
(identical to the of class data.cifar10_data.CIFAR10Data).

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_cutout (bool) – Whether option apply_cutout should be set of method
torch_input_transforms(). We use cutouts of size 8 x 8 as recommended here.

Note: Only applies if use_data_augmentation is set.

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled. Preprocessing involves normalization
and (for training mode) random perturbations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

22 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/pdf/1708.04552.pdf
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

1.2.7 CUB-200-2011 Dataset

The module data.cub_200_2011_data contains a dataloader for the Caltech-UCSD Birds-200-2011 Dataset (CUB-
200-2011).

The dataset is available at:

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

For more information on the dataset, please refer to the corresponding publication:

Wah et al., “The Caltech-UCSD Birds-200-2011 Dataset”, California Institute of Technology, 2011. http:
//www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf

The dataset consists of 11,788 images divided into 200 categories. The dataset has a specified train/test split and a lot
of additional information (bounding boxes, segmentation, parts annotation, . . .) that we don’t make use of yet.

Note: This dataset should not be confused with the older version CUB-200, containing only 6,033 images.

Note: We use the same data augmentation as for class data.ilsvrc2012_data.ILSVRC2012Data.

Note: The original category labels range from 1-200. We modify them to range from 0 - 199.

class hypnettorch.data.cub_200_2011_data.CUB2002011(data_path, use_one_hot=False,
num_val_per_class=0)

Bases: LargeImgDataset

An instance of the class shall represent the CUB-200-2011 dataset.

The input data of the dataset will be strings to image files. The output data corresponds to object labels (bird
categories).

Note: The dataset will be downloaded if not available.

Note: The original category labels range from 1-200. We modify them to range from 0 - 199.

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

Note: This option does not influence the internal PyTorch Dataset classes (e.g., cmp. data.
large_img_dataset.LargeImgDataset.torch_train), that can be used in conjunction
with PyTorch data loaders.

1.2. API 23

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf
http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• num_val_per_class (int) – The number of validation samples per class. For instance: If
value 10 is given, a validation set of size 5 * 200 = 1,000 is constructed (these samples will
be removed from the training set).

Note: Validation samples use the same data augmentation pipeline as test samples.

get_identifier()

Returns the name of the dataset.

tf_input_map(mode='inference')
Not impemented.

1.2.8 Fashion-MNIST Dataset

The module data.fashion_mnist contains a handler for the Fashion-MNIST dataset.

The dataset was introduced in:

Xiao et al., Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms,
2017.

This module contains a simple wrapper from the corresponding torchvision dataset to our dataset interface data.
dataset.Dataset.

class hypnettorch.data.fashion_mnist.FashionMNISTData(data_path, use_one_hot=False,
validation_size=0,
use_torch_augmentation=False)

Bases: Dataset

An instance of the class shall represent the Fashion-MNIST dataset.

Note: By default, input samples are provided in a range of [0, 1].

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_torch_augmentation (bool) – Apply data augmentation to inputs when calling
method data.dataset.Dataset.input_to_torch_tensor().

The augmentation will be identical to the one provided by class data.mnist_data.
MNISTData, except that during training also random horizontal flips are applied.

Note: If activated, the statistics of test samples are changed as a normalization is applied.

24 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://github.com/zalandoresearch/fashion-mnist
https://arxiv.org/abs/1708.07747
https://pytorch.org/docs/master/torchvision/datasets.html#fashion-mnist
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

If enabled via constructor option use_torch_augmentation, input images are preprocessed. Preprocess-
ing involves normalization and (for training mode) random perturbations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

1.2.9 ILSVRC2012 Dataset

The module data.ilsvrc2012_data contains a handler for the Imagenet Large Scale Visual Recognition Challenge
2012 (ILSVRC2012) dataset, a subset of the ImageNet dataset:

http://www.image-net.org/challenges/LSVRC/2012/index

For more details on the dataset, please refer to:

Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision 115, no. 3 (December 1, 2015): 211–52, https://doi.org/10.1007/s11263-015-0816-y

Note: In the current implementation, this handler will not download and extract the dataset for you. You have to do
this manually by following the instructions of the README file (which is located in the same folder as this file).

Note: We use the validation set as test set. A new (custom) validation set will be created by taking the first 𝑛 samples
from each training class as validation samples, where 𝑛 is configured by the user.

Note: This dataset has not yet been prepared for Tensorflow use!

When using PyTorch, this class will create dataset classes (torch.utils.data.Dataset) for you for the training,
testing and validation set. Afterwards, you can use these dataset instances to create data loaders:

train_loader = torch.utils.data.DataLoader(
ilsvrc2012_data.torch_train, batch_size=256, shuffle=True,
num_workers=4, pin_memory=True)

You should then use these Pytorch data loaders rather than class internal methods to work with the dataset.

PyTorch data augmentation is applied as defined by the method ILSVRC2012Data.torch_input_transforms().
Images will be resized and cropped to size 224 x 224.

1.2. API 25

https://pytorch.org/docs/master/tensors.html#torch.Tensor
http://www.image-net.org/challenges/LSVRC/2012/index
https://doi.org/10.1007/s11263-015-0816-y
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset

hypnettorch, Release 1.0

class hypnettorch.data.ilsvrc2012_data.ILSVRC2012Data(data_path, use_one_hot=False,
num_val_per_class=0)

Bases: LargeImgDataset

An instance of the class shall represent the ILSVRC2012 dataset.

The input data of the dataset will be strings to image files. The output data corresponds to object labels according
to the ILSVRC2012_ID - 1.

Note: This is different from many other ILSVRC2012 data handlers, where the labels are computed based on
the order of the training folder names (which correspond to WordNet IDs (WNID)).

Note: The dataset has to be already downloaded and extracted before this method can be called. See the local
README file for details.

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing. Note, class labels correspond to the ILSVRC2012_ID minus 1 (from 0 to 999).

Note: This option does not influence the internal PyTorch Dataset classes (e.g., cmp. data.
large_img_dataset.LargeImgDataset.torch_train), that can be used in conjunction
with PyTorch data loaders.

• num_val_per_class (int) – The number of validation samples per class.

Note: The actual ILSVRC2012 validation set is used as test set by this data handler. There-
fore, a new validation set is constructed (if value greater than 0), using the same amount of
samples per class. For instance: If value 50 is given, a validation set of size 50 * 1000 =
50,000 is constructed (these samples will be removed from the training set).

Note: Validation samples use the same data augmentation pipeline as test samples.

get_identifier()

Returns the name of the dataset.

tf_input_map(mode='inference')
Not impemented.

to_common_labels(outputs)
Translate between label conventions.

Translate a given set of labels (that correspond to the ILSVRC2012_ID (minus one) of their images) back
to the labels provided by the torchvision.datasets.ImageFolder class.

26 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Note: This would be the label convention for ImageNet used by PyTorch examples.

Parameters
outputs – Targets (as integers or 1-hot encodings).

Returns
The translated targets (if the targets where given as 1-hot encodings, then this method also
returns 1-hot encodings).

static torch_input_transforms()

Get data augmentation pipelines for ILSVRC2012 inputs.

Note, the augmentation is inspired by the augmentation proposed in:
https://git.io/fjWPZ

Returns

Tuple containing:

• train_transform: A transforms pipeline that applies random transformations, normalizes
the image and resizes/crops it to a final size of 224 x 224 pixels.

• test_transform: Similar to train_transform, but no random transformations are applied.

Return type
(tuple)

1.2.10 MNIST Dataset

The module data.mnist_data contains a handler for the MNIST dataset.

The implementation is based on an earlier implementation of a class I used in another project:

https://git.io/fNyQL

Information about the dataset can be retrieved from:

http://yann.lecun.com/exdb/mnist/

class hypnettorch.data.mnist_data.MNISTData(data_path, use_one_hot=False, validation_size=5000,
use_torch_augmentation=False)

Bases: Dataset

An instance of the class shall represent the MNIST dataset.

The constructor checks whether the dataset has been read before (a pickle dump has been generated). If so, it
reads the dump. Otherwise, it reads the data from scratch and creates a dump for future usage.

Note: By default, input samples are provided in a range of [0, 1].

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

1.2. API 27

https://git.io/fjWPZ
https://docs.python.org/3/library/stdtypes.html#tuple
https://git.io/fNyQL
http://yann.lecun.com/exdb/mnist/
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_torch_augmentation (bool) – Apply data augmentation to inputs when calling
method data.dataset.Dataset.input_to_torch_tensor().

The augmentation will withening the inputs according to training image statistics (mean:
0.1307, std: 0.3081). In training mode, it will additionally apply random crops.

Note: If activated, the statistics of test samples are changed as a normalization is applied.

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

If enabled via constructor option use_torch_augmentation, input images are preprocessed. Preprocess-
ing involves normalization and (for training mode) random perturbations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

static plot_sample(image, label=None, interactive=False, file_name=None)
Plot a single MNIST sample.

This method is thought to be helpful for evaluation and debugging purposes.

Deprecated since version 1.0: Please use method data.dataset.Dataset.plot_samples() instead.

Parameters

• image – A single MNIST image (given as 1D vector).

• label – The label of the given image.

• interactive – Turn on interactive mode. Thus program will run in background while
figure is displayed. The figure will be displayed until another one is displayed, the user
closes it or the program has terminated. If this option is deactivated, the program will
freeze until the user closes the figure.

• file_name – (optional) If a file name is provided, then the image will be written into a file
instead of plotted to the screen.

static torch_input_transforms(use_random_hflips=False)
Get data augmentation pipelines for MNIST inputs.

28 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Parameters
use_random_hflips (bool) – Also use random horizontal flips during training.

Note: That should not be True for MNIST, since digits loose there meaning when flipped.

Returns

Tuple containing:

• train_transform: A transforms pipeline that applies random transformations and normal-
izes the image.

• test_transform: Similar to train_transform, but no random transformations are applied.

Return type
(tuple)

1.2.11 Street View House Numbers (SVHN) Dataset

The module data.svhn_data contains a handler for the SVHN dataset.

The dataset was introduced in:

Netzer et al., Reading Digits in Natural Images with Unsupervised Feature Learning, 2011.

This module contains a simple wrapper from the corresponding torchvision class torchvision.datasets.SVHN to
our dataset interface data.dataset.Dataset.

class hypnettorch.data.svhn_data.SVHNData(data_path, use_one_hot=False, validation_size=0,
use_torch_augmentation=False, use_cutout=False,
include_train_extra=False)

Bases: Dataset

An instance of the class shall represent the SVHN dataset.

Note: By default, input samples are provided in a range of [0, 1].

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_torch_augmentation (bool) – Note, this option currently only applies to input
batches that are transformed using the class member input_to_torch_tensor() (hence,
only available for PyTorch, so far).

The augmentation will be identical to the one provided by class data.cifar10_data.
CIFAR10Data, except that during training no random horizontal flips are applied.

1.2. API 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
http://ufldl.stanford.edu/housenumbers
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://pytorch.org/docs/master/torchvision/datasets.html#svhn
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Note: If activated, the statistics of test samples are changed as a normalization is applied
(identical to the of class data.cifar10_data.CIFAR10Data).

• use_cutout (bool) – Whether option apply_cutout should be set of method
torch_input_transforms(). We use cutouts of size 20 x 20 as recommended here.

Note: Only applies if use_data_augmentation is set.

• include_train_extra (bool) – The training dataset can be extended by “531,131 addi-
tional, somewhat less difficult samples” (see here).

Note, as long as the validation set size is smaller than the original training set size, all valida-
tion samples would be taken from the original training set (and thus not contain those “less
difficult” samples).

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

The input images are preprocessed if data augmentation is enabled. Preprocessing involves normalization
and (for training mode) random perturbations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

1.2.12 Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

The module udacity_ch2 contains a handler for the Udacity Self-Driving Car Challenge 2, which contains imagery
from a car’s frontal center camera in combination with CAN recorded steering angles (the actual dataset contains more
information, but those ingredients are enough for the steering angle prediction task).

Note: In the current implementation, this handler will not download and extract the dataset for you. You have to do
this manually by following the instructions of the README file (which is located in the same folder as this file).

When using PyTorch, this class will create dataset classes (torch.utils.data.Dataset) for you for the training,
testing and validation set. Afterwards, you can use these dataset instances to create data loaders:

train_loader = torch.utils.data.DataLoader(
udacity_ch2.torch_train, batch_size=256, shuffle=True,
num_workers=4, pin_memory=True)

30 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/pdf/1708.04552.pdf
https://docs.python.org/3/library/functions.html#bool
http://ufldl.stanford.edu/housenumbers
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://medium.com/@maccallister.h/challenge-2-submission-guidelines-284ce6641c41#.az85snjmh
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset

hypnettorch, Release 1.0

You should then use these Pytorch data loaders rather than class internal methods to work with the dataset.

PyTorch data augmentation is applied as defined by the method UdacityCH2Data.torch_input_transforms().

class hypnettorch.data.udacity_ch2.UdacityCh2Data(data_path, num_val=0)
Bases: LargeImgDataset

An instance of the class is representing the Udacity Ch2 dataset.

The input data of the dataset will be strings to image files. The output data corresponds to steering angles.

Note: The dataset has to be already downloaded and extracted before this method can be called. See the local
README file for details.

Parameters

• data_path (str) – Where should the dataset be read from? The dataset folder is expected
to contain the subfolders Ch2_001 (test set) and Ch2_002 (train and validation set). See
README for details.

• num_val (int) – The number of validation samples. The validation set will be random
subset of the training set. Validation samples are excluded from the training set!

Note: Validation samples use the same data augmentation pipeline as test samples.

get_identifier()

Returns the name of the dataset.

property test_angles_available

Whether the test angles are available.

Note: If not available, test angles will all be set to zero!

The original dataset comes only with test images. However, the test set was later released too, which
contains both images and angles. See the README for details.

Type
bool

tf_input_map(mode='inference')
Not impemented.

static torch_input_transforms()

Get data augmentation pipelines for Udacity Ch2 inputs.

Returns

Tuple containing:

• train_transform: A transforms pipeline that resizes images to 256 x 192 pixels and nor-
malizes them.

• test_transform: Similar to train_transform.

Return type
(tuple)

1.2. API 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

1.3 Sequential, custom and special datasets

1.3.1 Custom and special datasets

Contents

• Custom and special datasets

– Continual Learning Datasets

∗ Toy (Regression) Problems

· 2D Donut Dataset

· Gaussian Mixture via a set of Gaussian Datasets

· Gaussian Mixture Model Dataset

· 1D Regression Dataset

· 1D Regression Dataset with bimodal error

∗ Classification Tasks

· Permuted MNIST Dataset

· Split MNIST Dataset

· Split CIFAR-10/100 Dataset

Continual Learning Datasets

Toy (Regression) Problems

2D Donut Dataset

This data handler creates a synthetic toy problem comprising 2D annuli.

class hypnettorch.data.special.donuts.Donuts(centers=((0, 0), (0, 0)), radii=((3, 4), (9, 10)),
num_train=100, num_test=100, use_one_hot=True,
rseed=42)

Bases: Dataset

Donut dataset handler.

Note, each donut prescribes a different class.

Parameters

• centers (tuple or list) – List of tuples, each determining the center of a donut.

• radii (tuple or list) – List of tuples, each tuple defines the inner and outer radius of a
donut.

• num_train (int) – Number of training samples per donut.

• num_test (int) – Number of test samples per donut.

32 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• use_one_hot (bool) – Whether the class labels should be represented as a one-hot encod-
ing.

• rseed (int) – If None, the current random state of numpy is used to generate the data.
Otherwise, a new random state with the given seed is generated.

get_identifier()

Returns the name of the dataset.

plot_dataset(title, show=True, filename=None, interactive=False, figsize=(10, 6))
Plot samples belonging to this dataset.

Parameters
(....) – See docstring of method data.dataset.Dataset.plot_samples().

static sample_annulus(x_c, y_c, r_inner, r_outer, num=1, rand=None)
Sample uniformly from an annulus.

Sample uniformly (𝑥, 𝑦) satisfiying:

(𝑥− 𝑥c)
2 + (𝑦 − 𝑦c)

2 ≤ 𝑟2outer

and

(𝑥− 𝑥c)
2 + (𝑦 − 𝑦c)

2 > 𝑟2inner

Parameters

• x_c (float) – x-position of the center.

• y_c (float) – y-position of the center.

• r_inner (float) – Inner radius.

• r_outer (float) – Outer radius.

• num (int) – Number of samples to return.

• rand (numpy.random.RandomState, optional) – Random state object used for sam-
pling.

Returns
Array of shape [num, 2].

Return type
(numpy.ndarray)

Gaussian Mixture via a set of Gaussian Datasets

The module data.special.gaussian_mixture_data contains a toy dataset consisting of input data drawn from a
2D Gaussian distribution. Combining several such datasets creates a Gaussian mixture (e.g., each mixture component
would be one dataset from class GaussianData).

The dataset is inspired by the toy example provided in section 4.5 of
https://arxiv.org/pdf/1606.00704.pdf

However, the mixture of Gaussians only determines the input domain x (which is enough for a GAN dataset). Though,
we also need to specify the output y.

For instance, each Gaussian bump could be the input domain of one task. Given this input domain, the task would be
to predict p(x), thus y = p(x).

1.3. Sequential, custom and special datasets 33

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/pdf/1606.00704.pdf

hypnettorch, Release 1.0

In the case of small variances, the task can be detected from seeing the input x alone. This allows us to predict task
embeddings based on inputs, such that there is no need to define the task embedding manually.

class hypnettorch.data.special.gaussian_mixture_data.GaussianData(mean=array([0, 0]),
cov=array([[0.0025, 0.0],
[0.0, 0.0025]]),
num_train=100,
num_test=100,
map_function=None,
rseed=None)

Bases: Dataset

An instance of this class shall represent a regression task where the input samples 𝑥 are drawn from a Gaussian
with given mean and variance.

Due to plotting functionalities, this class only supports 2D inputs and 1D outputs.

Generate a new dataset.

The input data x for train and test samples will be drawn iid from the given Gaussian. Per default, the map
function is the probability density of the given Gaussian: y = f(x) = p(x).

Parameters

• mean – The mean of the Gaussian.

• cov – The covariance of the Gaussian.

• num_train – Number of training samples.

• num_test – Number of test samples.

• map_function (optional) – A function handle that receives input samples and maps them
to output samples. If not specified, the density function will be used as map function.

• rseed (int) – If None, the current random state of numpy is used to generate the data.
Otherwise, a new random state with the given seed is generated.

property cov

Covariance matrix.

get_identifier()

Returns the name of the dataset.

property mean

Mean vector.

plot_dataset(show=True)
Plot the whole dataset.

Parameters
show (bool) – Whether the plot should be shown.

Returns
The figure handle.

static plot_datasets(data_handlers, inputs=None, predictions=None, labels=None, show=True,
filename=None, figsize=(10, 6))

Plot several datasets of this class in one plot.

Parameters

• data_handlers – A list of GaussianData objects.

34 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• inputs (optional) – A list of numpy arrays representing inputs for each dataset.

• predictions (optional) – A list of numpy arrays containing the predicted output values
for the given input values.

• labels (optional) – A label for each dataset.

• show – Whether the plot should be shown.

• filename (optional) – If provided, the figure will be stored under this filename.

• figsize – A tuple, determining the size of the figure in inches.

plot_predictions(predictions, label='Pred', show_train=True, show_test=True)
Plot the dataset as well as predictions.

Parameters

• predictions – A tuple of x and y values, where the y values are computed by a trained
regression network. Note, that x is supposed to be 2D numpy array, whereas y is a 1D
numpy array.

• label – Label of the predicted values as shown in the legend.

• show_train – Show train samples.

• show_test – Show test samples.

plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True,
filename=None, interactive=False, figsize=(10, 6))

Plot samples belonging to this dataset.

Note: Either outputs or predictions must be not None!

Parameters

• title – The title of the whole figure.

• inputs – A 2D numpy array, where each row is an input sample.

• outputs (optional) – A 2D numpy array of actual dataset targets.

• predictions (optional) – A 2D numpy array of predicted output samples (i.e., output
predicted by a neural network).

• num_samples_per_row – Maximum number of samples plotted per row in the generated
figure.

• show – Whether the plot should be shown.

• filename (optional) – If provided, the figure will be stored under this filename.

• interactive – Turn on interactive mode. We mainly use this option to ensure that the
program will run in background while figure is displayed. The figure will be displayed until
another one is displayed, the user closes it or the program has terminated. If this option
is deactivated, the program will freeze until the user closes the figure. Note, if using the
iPython inline backend, this option has no effect.

• figsize – A tuple, determining the size of the figure in inches.

1.3. Sequential, custom and special datasets 35

hypnettorch, Release 1.0

hypnettorch.data.special.gaussian_mixture_data.get_gmm_tasks(means=[array([-4, -4]), array([-4,
-2]), array([-4, 0]), array([-4, 2]),
array([-4, 4]), array([-2, -4]),
array([-2, -2]), array([-2, 0]),
array([-2, 2]), array([-2, 4]),
array([0, -4]), array([0, -2]),
array([0, 0]), array([0, 2]), array([0,
4]), array([2, -4]), array([2, -2]),
array([2, 0]), array([2, 2]), array([2,
4]), array([4, -4]), array([4, -2]),
array([4, 0]), array([4, 2]), array([4,
4])], covs=[array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]]), array([[0.0025, 0.0],
[0.0, 0.0025]])], num_train=100,
num_test=100,
map_functions=None, rseed=None)

Generate a set of data handlers (one for each task) of class GaussianData.

Parameters

• means – The mean of each Gaussian.

• covs – The covariance matrix of each Gaussian.

• num_train – Number of training samples per task.

• num_test – Number of test samples per task.

• map_functions (optional) – A list of “map_functions”, one for each task.

• rseed (int) – See argument rseed of class GaussianData. The i-th dataset generated by
this function will be passed the the random state rseed+i is specified.

Returns
A list of objects of class GaussianData.

36 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Return type
(list)

Gaussian Mixture Model Dataset

The module data.special.gaussian_mixture_data is stemming from a conditional view, where every mode in
the Gaussian mixture is a separate task (single dataset). Therefore, it provides N distinct data handlers when having N
distinct modes.

Unfortunately, this configuration is not ideal for unsupervised GAN training (as we want to be able to provide batches
that contain data from a mix of modes without having to manually assemble these batches) or for training a classifier
for a GMM toy problem.

Therefore, this module provides a wrapper that converts a sequence of data handlers of class data.special.
gaussian_mixture_data.GaussianData (i.e., a set of single modes) to a combined data handler.

Model description:

Let 𝑥 denote the input data. The class GMMData assumes that it’s input training data is drawn from the following
Gaussian Mixture Model:

𝑝(𝑥) =

𝐾∑︁
𝑘=1

𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)

with mixing coefficients 𝜋𝑘, such that
∑︀

𝑘 𝜋𝑘 = 1.

Note, it is up to the user of this class to provide appropriate training data (only important to keep in mind if unequal train
set sizes are provided via constructor argument gaussian_datasets or if mixing_coefficients are non-uniform).

Let 𝑦 denote a 𝐾-dimensional 1-hot encoding, i.e., 𝑦𝑘 ∈ {0, 1} and
∑︀

𝑘 𝑦𝑘 = 1. Thus, 𝑦 is the latent variable that we
want to infer (e.g., the optimal classification label) with marginal probabilities:

𝑝(𝑦𝑘 = 1) = 𝜋𝑘

The conditional likelihood of a component is:

𝑝(𝑥 | 𝑦𝑘 = 1) = 𝒩 (𝑥;𝜇𝑘,Σ𝑘)

Using Bayes Theorem we obtain the posterior:

𝑝(𝑦𝑘 = 1 | 𝑥) =
𝑝(𝑥 | 𝑦𝑘 = 1)𝑝(𝑦𝑘 = 1)

𝑝(𝑥)

=
𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)∑︀𝐾
𝑙=1 𝜋𝑙𝒩 (𝑥;𝜇𝑙,Σ𝑙)

class hypnettorch.data.special.gmm_data.GMMData(gaussian_datasets, classification=False,
use_one_hot=False, mixing_coefficients=None)

Bases: Dataset

Dataset with inputs drawn from a Gaussian mixture model.

An instance of this class combines several instances of class data.special.gaussian_mixture_data.
GaussianData into one data handler. I.e., multiple gaussian bumps are combined to a Gaussian mixture dataset.

Most importantly, the dataset can be turned into a classification task, where the label corresponds to the ID of
the Gaussian bump from which the sample was drawn. Otherwise, the original outputs will remain.

1.3. Sequential, custom and special datasets 37

https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Note: You can use function data.special.gaussian_mixture_data.get_gmm_tasks() to create a set of
tasks to be passed as constructor argument gaussian_datasets.

Parameters

• gaussian_datasets (list) – A list of instances of class data.special.
gaussian_mixture_data.GaussianData.

• classification (bool) – If True, the original outputs of the datasets will be omitted and
replaced by the dataset index. Therefore, the original regression datasets are combined to a
single classification dataset.

• use_one_hot (bool) – Whether the class labels should be represented as a one-hot encod-
ing. This option only applies if classification is True.

• mixing_coefficients (list, optional) – The mixing coefficients 𝜋𝑘 of the individual
mixture components. If not specified, 𝜋𝑘 will be assumed to be 1. / self.num_modes.

𝑝(𝑥) =

𝐾∑︁
𝑘=1

𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)

Note: Mixing coefficients have to sum to 1.

Note: If mixing coefficients are not uniform, then one has to externally ensure that the train-
ing data is distributed accordingly. For instance, if mixing_coefficients=[.1, .9],
then the second dataset passed via gaussian_datasets should have 9 times more training
samples then the first dataset.

estimate_distance(fake, component_densities=None, density_estimation='hist', eps=1e-05)
This method estimates the distance/divergence of the empirical fake distribution with the underlying true
data disctribution.

Therefore, we utilize the fact that we know the data distribution.

The following distance/divergence measures are implemented:

• Symmetric KL divergence: The fake samples are used to estimate the model density. The fake samples
are used to estimate 𝐷KL(fake || real). An additional set of real samples is drawn from the training
data to compute a Monte Carlo estimate of 𝐷KL(real || fake).

Comment from Simone Surace about this approach: “Doing density estimation first and then comput-
ing the integral is known to be the wrong way to go (there is an entire literature about this problem).”
This should be kept in mind when using this estimate.

Parameters

• fake (numpy.ndarray) – A 2D numpy array, where each row is an input sample (usually
drawn from a generator network).

• component_densities (numpy.ndarray, optional) – A 2D numpy array with each
row corresponding to a sample in fake and each column corresponding to a mode in
this dataset. Each entry represents the density of the corresponding sample under the
corresponding mixture component. See return value responsibilities of method
estimate_mode_coverage().

38 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

• density_estimation – Which kind of method should be used to estimate the model dis-
tribution (i.e., density of given samples under the distribution estimated from those sam-
ples). Available methods are:

– 'hist': We estimate the fake density based on a normalized 2D histogram of the sam-
ples. We use the Square-root choice to compute the number of bins per dimension.

– 'gaussian': Uses the kernel density method 'gaussian' from sklearn.
neighbors.kde.KernelDensity. Note, we don’t change the default `bandwidth`
value!

• eps (float) – We don’t allow densities to be smaller than this value for numerical stability
reasons (when computing the log).

Returns
The estimated symmetric KL divergence.

estimate_mode_coverage(fake, responsibilities=None)
Compute the mode coverage of fake samples as suggested in

https://arxiv.org/abs/1606.00704

This method will compute the responsibilities for each fake sample towards each mixture component and
assign each sample to the mixture component with the highest responsibility. Mixture components that get
no fake sample assigned are considered dropped modes.

The paper referenced above used 10,000 fake samples (on their synthetic dataset) to measure the mode
coverage.

Parameters

• fake – A 2D numpy array, where each row is an input sample (usually drawn from a
generator network).

• responsibilities (optional) – The responsibilities of each fake data point (may be
unnormalized). A 2D numpy array with each row corresponding to a sample in fake and
each column corresponding to a mode in this dataset.

Returns

A tuple containing:

• num_covered: The number of modes that have at least one fake sample with maximum
responsibility being assigned to that mode.

• responsibilities: The given or computed responsibilities. If computed by this method, the
responsibilities will be unnormalized, i.e., correspond to the densities per component of
this mixture model.

Return type
(tuple)

get_identifier()

Returns the name of the dataset.

get_input_mesh(x1_range=None, x2_range=None, grid_size=1000)
Create a 2D grid of input values.

The default grid returned by this method will also be the default grid used by the method
plot_uncertainty_map().

1.3. Sequential, custom and special datasets 39

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1606.00704
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

Note: This method is only implemented for 2D datasets.

Parameters

• x1_range (tuple, optional) – The min and max value for the first input dimension. If
not specified, the range will be automatically inferred.

Automatical inference is based on the underlying data (train and test). The range will be
set, such that all data can be drawn inside.

• x2_range (tuple, optional) – Same as x1_range for the second input dimension.

• grid_size (int or tuple) – How many input samples per dimension. If an integer is
passed, then the same number grid size will be used for both dimension. The grid is build
by equally spacing grid_size inside the ranges x1_range and x2_range.

Returns

Tuple containing:

• x1_grid (numpy.ndarray): A 2D array, containing the grid values of the first dimension.

• x2_grid (numpy.ndarray): A 2D array, containing the grid values of the second dimension.

• flattended_grid (numpy.ndarray): A 2D array, containing all samples from the first di-
mension in the first column and all values corresponding to the second dimension in the
second column. This format correspond to the input format as, for instance, returned by
methods such as data.dataset.Dataset.get_train_inputs().

Return type
(tuple)

property means

2D array, containing the mean of each component in its rows.

Type
np.ndarray

property num_modes

The number of mixture components.

Type
int

plot_optimal_classification(title='Classification Map', input_mesh=None, mesh_modes=None,
sample_inputs=None, sample_modes=None, sample_label=None,
sketch_components=False, show=True, filename=None, figsize=(10, 6))

Plot a color-coded grid on how to optimally classify for each input value.

Note: Since the training data is drawn randomly, it might be that some training samples have a label that
doesn’t correpond to the optimal label.

Parameters

• (....) – See arguments of method plot_uncertainty_map().

40 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• mesh_modes (numpy.ndarray, optional) – If not provided, then the color of each grid
position 𝑥 is determined based on arg max𝑘 𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘). Otherwise, the labeling pro-
vided here will determine the coloring.

plot_real_fake(title, real, fake, show=True, filename=None, interactive=False, figsize=(10, 6))
Useful method when using this dataset in conjunction with GAN training. Plots the given real and fake
input samples in a 2D plane.

Parameters

• (....) – See docstring of method data.dataset.Dataset.plot_samples().

• real (numpy.ndarray) – A 2D numpy array, where each row is an input sample. These
samples correspond to actual input samples drawn from the dataset.

• fake (numpy.ndarray) – A 2D numpy array, where each row is an input sample. These
samples correspond to generated samples.

plot_samples(title, inputs, outputs=None, predictions=None, show=True, filename=None,
interactive=False, figsize=(10, 6))

Plot samples belonging to this dataset.

Parameters
(....) – See docstring of method data.dataset.Dataset.plot_samples().

plot_uncertainty_map(title='Uncertainty Map', input_mesh=None, uncertainties=None,
use_generative_uncertainty=False, use_ent_joint_uncertainty=False,
sample_inputs=None, sample_modes=None, sample_label=None,
sketch_components=False, norm_eps=None, show=True, filename=None,
figsize=(10, 6))

Draw an uncertainty heatmap.

Parameters

• title (str) – Title of plots.

• input_mesh (tuple, optional) – The input mesh of the heatmap (see return value
of method get_input_mesh()). If not specified, the default return value of method
get_input_mesh() is used.

• uncertainties (numpy.ndarray, optional) – The uncertainties corresponding to
input_mesh. If not specified, then the uncertainties will be computed based the entropy
across 𝑘 = 1..𝐾 for

𝑝(𝑦𝑘 = 1 | 𝑥) =
𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)∑︀𝐾
𝑙=1 𝜋𝑙𝒩 (𝑥;𝜇𝑙,Σ𝑙)

Note: The entropies will be normalized by the maximum uncertainty -np.log(1.0 /
self.num_modes).

• use_generative_uncertainty (bool) – If True, the uncertainties plotted by default
(if uncertainties is left unspecified) are not based on the entropy of the responsibilities
𝑝(𝑦𝑘 = 1 | 𝑥), but are the densities of the underlying GMM 𝑝(𝑥).

• use_ent_joint_uncertainty (bool) – If True, the uncertainties plotted by default (if

1.3. Sequential, custom and special datasets 41

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

uncertainties is left unspecified) are based on the entropy of 𝑝(𝑦, 𝑥) at location 𝑥:

−
∑︁
𝑘

𝑝(𝑥)𝑝(𝑦𝑘 = 1 | 𝑥) log 𝑝(𝑥)𝑝(𝑦𝑘 = 1 | 𝑥)

= − 𝑝(𝑥)
∑︁
𝑘

𝑝(𝑦𝑘 = 1 | 𝑥) log 𝑝(𝑦𝑘 = 1 | 𝑥) − 𝑝(𝑥) log 𝑝(𝑥)

Note, we normalize 𝑝(𝑥) by its maximum inside the chosen grid. Hence, the plot de-
pends on the chosen input_mesh. In this way, 𝑝(𝑥) ∈ [0, 1] and the second term
−𝑝(𝑥) log 𝑝(𝑥) ∈ [0, exp(−1)] (note, −𝑝(𝑥) log 𝑝(𝑥) would be negative for 𝑝(𝑥) > 1).

The first term is simply the entropy of 𝑝(𝑦 | 𝑥) scaled by 𝑝(𝑥). Hence, it shows where in
the input space are the regions where Gaussian bumps are overlapping (regions in which
data exists but multiple labels 𝑦 are possible).

The second term shows the boundaries of the data manifold. Note, −1 log 1 = 0 and
− lim𝑝(𝑥)→0 𝑝(𝑥) log 𝑝(𝑥) = 0.

Note: This option is mutually exclusive with option use_generative_uncertainty.

Note: Entropies of 𝑝(𝑦 | 𝑥) won’t be normalized in this case.

• sample_inputs (numpy.ndarray, optional) – Sample inputs. Can be specified if a
scatter plot of samples (e.g., train samples) should be laid above the heatmap.

• sample_modes (numpy.ndarray, optional) – To which mode do the samples in
sample_inputs belong to? If provided, then for each sample in sample_inputs a num-
ber smaller than num_modes is expected. All samples with the same mode identifier are
colored with the same color.

• sample_label (str, optional) – If a label should be shown in the legend for inputs
sample_inputs.

• sketch_components (bool) – Sketch the mean and variance of each component.

• norm_eps (float, optional) – If uncertainties are computed by this method, then (nor-
malized) densities for each x-value in the input mesh have to be computed. To avoid divi-
sion by zero, a positive number norm_eps can be specified.

• (....) – See docstring of method data.dataset.Dataset.plot_samples().

1D Regression Dataset

The module data.special.regression1d_data contains a data handler for a CL toy regression problem. The user
can construct individual datasets with this data handler and use each of these datasets to train a model in a continual
leraning setting.

class hypnettorch.data.special.regression1d_data.ToyRegression(train_inter=[-10, 10],
num_train=20, test_inter=[-10,
10], num_test=80,
val_inter=None, num_val=None,
map_function=<function
ToyRegression.<lambda>>,
std=0.0, perturb_test_val=False,
rseed=None)

42 Chapter 1. Custom data handlers for common ML datasets

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

Bases: Dataset

An instance of this class shall represent a simple regression task.

Generate a new dataset.

The input data x will be uniformly drawn for train samples and equidistant for test samples. The user has to
specify a function that will map this random input data onto output samples y.

Parameters

• train_inter (tuple or list) – A tuple, representing the interval from which x samples
are drawn in the training set.

train_inter may also be provided as a list of tuples, in which case training samples will
be distributed according to the range covered by each tuple.

• num_train (int) – Number of training samples.

• test_inter (tuple) – A tuple, representing the interval from which x samples are drawn
in the test set.

• num_test (int) – Number of test samples.

• val_inter (tuple, optional) – See parameter test_inter. If set, this argument leads to
the construction of a validation set. Note, option num_val need to be specified as well.

• num_val (int, optional) – Number of validation samples.

• map_function (func) – A function handle that receives input samples and maps them to
output samples.

• std (float or func) – If not zero, Gaussian white noise with this std will be added to the
training outputs.

Heteroscedasticity can be realized by passing a function 𝜎(𝑥) that describes the standard
deviations at a given location 𝑥. Note, this function may only outputs numbers ≥ 0.

• perturb_test_val (bool) – By default, the option std only adds noise to the training
data, not the validation or test data. If this option is True, then also the validation and test
targets will be perturbed. This might be helpful for measuring calibration.

• rseed (int) – If None, the current random state of numpy is used to generate the data.
Otherwise, a new random state with the given seed is generated.

get_identifier()

Returns the name of the dataset.

plot_dataset(show=True)
Plot the whole dataset.

Parameters
show – Whether the plot should be shown.

static plot_datasets(data_handlers, inputs=None, predictions=None, labels=None, fun_xranges=None,
show=True, filename=None, figsize=(10, 6), publication_style=False)

Plot several datasets of this class in one plot.

Parameters

• data_handlers – A list of ToyRegression objects.

• inputs (optional) – A list of numpy arrays representing inputs for each dataset.

1.3. Sequential, custom and special datasets 43

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• predictions (optional) – A list of numpy arrays containing the predicted output values
for the given input values.

• labels (optional) – A label for each dataset.

• fun_xranges (optional) – List of x ranges in which the true underlying function per
dataset should be sketched.

• show – Whether the plot should be shown.

• filename (optional) – If provided, the figure will be stored under this filename.

• figsize – A tuple, determining the size of the figure in inches.

• publication_style – Whether the plots should be in publication style.

plot_predictions(predictions, label='Pred', show_train=True, show_test=True)
Plot the dataset as well as predictions.

Parameters

• predictions – A tuple of x and y values, where the y values are computed by a trained
regression network. Note, that we assume the x values to be sorted.

• label – Label of the predicted values as shown in the legend.

• show_train – Show train samples.

• show_test – Show test samples.

plot_samples(title, inputs, outputs=None, predictions=None, num_samples_per_row=4, show=True,
filename=None, interactive=False, figsize=(10, 6))

Plot samples belonging to this dataset.

Note: Either outputs or predictions must be not None!

Parameters

• title – The title of the whole figure.

• inputs – A 2D numpy array, where each row is an input sample.

• outputs (optional) – A 2D numpy array of actual dataset targets.

• predictions (optional) – A 2D numpy array of predicted output samples (i.e., output
predicted by a neural network).

• num_samples_per_row – Maximum number of samples plotted per row in the generated
figure.

• show – Whether the plot should be shown.

• filename (optional) – If provided, the figure will be stored under this filename.

• interactive – Turn on interactive mode. We mainly use this option to ensure that the
program will run in background while figure is displayed. The figure will be displayed until
another one is displayed, the user closes it or the program has terminated. If this option
is deactivated, the program will freeze until the user closes the figure. Note, if using the
iPython inline backend, this option has no effect.

• figsize – A tuple, determining the size of the figure in inches.

44 Chapter 1. Custom data handlers for common ML datasets

hypnettorch, Release 1.0

property test_x_range

The input range for test samples.

property train_x_range

The input range for training samples.

property val_x_range

The input range for validation samples.

1D Regression Dataset with bimodal error

The module data.special.regression1d_bimodal_data contains a data handler for a CL toy regression problem.
The user can construct individual datasets with this data handler and use each of these datasets to train a model in a
continual learning setting.

class hypnettorch.data.special.regression1d_bimodal_data.BimodalToyRegression(train_inter=[-
10, 10],
num_train=20,
test_inter=[-
10, 10],
num_test=80,
val_inter=None,
num_val=None,
map_function=<function
Bimodal-
ToyRegres-
sion.<lambda>>,
alpha1=0.5,
dist1=5,
dist2=None,
std1=1,
std2=None,
rseed=None,
per-
turb_test_val=False)

Bases: ToyRegression

An instance of this class shall represent a simple regression task, but with a bimodal Gaussian mixture error
distribution.

Generate a new dataset.

The input data x will be uniformly drawn for train samples and equidistant for test samples. The user has to
specify a function that will map this random input data onto output samples y.

Parameters

• (....) – See docstring of class data.special.regression_1d_data.ToyRegression.

• alpha1 – Mixture coefficient of the first Gaussian mode of the error.

• dist1 – The distance from zero of mean of the first Gaussian component of the error.

• dist2 (optional) – The distance from zero of mean of the first Gaussian component of the
error. If None, the value of dist1 will be taken.

• std1 – The standard deviation of the first Gaussian component of the error.

1.3. Sequential, custom and special datasets 45

hypnettorch, Release 1.0

• std2 (optional) – The standard deviation of the first Gaussian component of the error. If
None, the value of std1 will be taken.

get_identifier()

Returns the name of the dataset.

Classification Tasks

Permuted MNIST Dataset

The module data.special.permuted_mnist contains a data handler for the permuted MNIST dataset.

class hypnettorch.data.special.permuted_mnist.PermutedMNIST(data_path, use_one_hot=True,
validation_size=0,
permutation=None, padding=0,
trgt_padding=None)

Bases: MNISTData

An instance of this class shall represent the permuted MNIST dataset, which is the same as the MNIST dataset,
just that input pixels are shuffled by a random matrix.

Note: Image transformations are computed on the fly when transforming batches to torch tensors. Hence, this
class is only applicable to PyTorch applications. Internally, the class stores the unpermuted images.

Parameters

• data_path – Where should the dataset be read from? If not existing, the dataset will be
downloaded into this folder.

• use_one_hot – Whether the class labels should be represented in a one-hot encoding.

• validation_size – The number of validation samples. Validation samples will be taking
from the training set (the first 𝑛 samples).

• permutation – The permutation that should be applied to the dataset. If None, no per-
mutation will be applied. We expect a numpy permutation of the form np.random.
permutation((28+2*padding)**2)

• padding – The amount of padding that should be applied to images.

Note: The padding is currently not reflected in the :attr:`data.dataset.Dataset.in_shape
attribute, as the padding is only applied to torch tensors. See attribute torch_in_shape.

• trgt_padding (int, optional) – If provided, trgt_padding fake classes will be added,
such that in total the returned dataset has len(labels) + trgt_padding classes. How-
ever, all padded classes have no input instances. Note, that 1-hot encodings are padded to fit
the new number of classes.

get_identifier()

Returns the name of the dataset.

46 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note, this method has been overwritten from the base class.

It applies zero padding and pixel permutations.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as PyTorch tensor.

Return type
(torch.Tensor)

property permutation

The permuation matrix that is applied to input images before they are transformed to Torch tensors.

tf_input_map(mode='inference')
Not implemented! The class currently does not support Tensorflow.

property torch_in_shape

The input shape of images, similar to attribute in_shape. In contrast to in_shape, this attribute
reflects the padding that is applied when calling classifier.permuted_mnist.PermutedMNIST.
input_to_torch_tensor().

static torch_input_transforms(permutation=None, padding=0)
Transform MNIST images to PyTorch tensors.

Parameters

• permutation – A given permutation that should be applied to all images.

• padding – Apply a given amount of zero padding.

Returns
A transforms pipeline.

class hypnettorch.data.special.permuted_mnist.PermutedMNISTList(permutations, data_path,
use_one_hot=True,
validation_size=0, padding=0,
trgt_padding=None,
show_perm_change_msg=True)

Bases: object

A list of permuted MNIST tasks that only uses a single instance of class PermutedMNIST.

An instance of this class emulates a Python list that holds objects of class PermutedMNIST. However, it doesn’t
actually hold several objects, but only one with just the permutation matrix being exchanged everytime a different
element of this list is retrieved. Therefore, use this class with care!

• As all list entries are the same PermutedMNIST object, one should never work with several list entries at
the same time! -> Retrieving a new list entry will modify every previously retrieved list entry!

• When retrieving a slice, a shallow copy of this object is created (i.e., the underlying PermutedMNIST does
not change) with only the desired subgroup of permutations avaliable.

Why would one use this object? When working with many permuted MNIST tasks, then the memory consump-
tion becomes significant if one desires to hold all task instances at once in working memory. An object of this

1.3. Sequential, custom and special datasets 47

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#object

hypnettorch, Release 1.0

class only needs to hold the MNIST dataset once in memory. Just the number of permutation matrices grows
linearly with the number of tasks.

Caution: You may never use more than one entry of this class at the same time, as all entries share the
same underlying data object and therewith the same permutation.

Note: The mini-batch generation process is maintained separately for every permutation. Thus, the retrieval of
mini-batches for different permutations does not influence one another.

Example

You should never use this list as follows

dhandlers = PermutedMNISTList(permutations, '/tmp')
d0 = dhandlers[0]
Zero-th permutation is active ...
...
d1 = dhandlers[1]
First permutation is active for `d0` and `d1`!
Important, you may not use `d0` anymore, as this might lead to
undesired behavior.

Example

Instead, always work with only one list entry at a time. The following usage would be correct

dhandlers = PermutedMNISTList(permutations, '/tmp')
d = dhandlers[0]
Zero-th permutation is active ...
...
d = dhandlers[1]
First permutation is active for `d` as expected.

Parameters

• (....) – See docstring of constructor of class PermutedMNIST.

• permutations – A list of permutations (see parameter permutation of class
PermutedMNIST to have a description of valid list entries). The length of this list denotes
the number of tasks.

• show_perm_change_msg – Whether to print a notification everytime the data permutation
has been exchanged. This should be enabled during developement such that a proper use of
this list is ensured. Note You may never work with two elements of this list at a time.

48 Chapter 1. Custom data handlers for common ML datasets

hypnettorch, Release 1.0

Split MNIST Dataset

The module data.special.split_mnist contains a wrapper for data handlers for the SplitMNIST task.

class hypnettorch.data.special.split_mnist.SplitMNIST(data_path, use_one_hot=False,
validation_size=1000,
use_torch_augmentation=False, labels=[0,
1], full_out_dim=False, trgt_padding=None)

Bases: MNISTData

An instance of the class shall represent a SplitMNIST task.

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• use_torch_augmentation (bool) – See docstring of class data.mnist_data.
MNISTData.

• labels (list) – The labels that should be part of this task.

• full_out_dim (bool) – Choose the original MNIST instead of the new task output dimen-
sion. This option will affect the attributes data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

• trgt_padding (int, optional) – If provided, trgt_padding fake classes will be added,
such that in total the returned dataset has len(labels) + trgt_padding classes. How-
ever, all padded classes have no input instances. Note, that 1-hot encodings are padded to fit
the new number of classes.

get_identifier()

Returns the name of the dataset.

transform_outputs(outputs)
Transform the outputs from the 10D MNIST dataset into proper labels based on the constructor argument
labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

Parameters
outputs – 2D numpy array of outputs.

Returns
2D numpy array of transformed outputs.

1.3. Sequential, custom and special datasets 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

hypnettorch.data.special.split_mnist.get_split_mnist_handlers(data_path, use_one_hot=True,
validation_size=0,
use_torch_augmentation=False,
num_classes_per_task=2,
num_tasks=None,
trgt_padding=None)

This function instantiates 5 objects of the class SplitMNIST which will contain a disjoint set of labels.

The SplitMNIST task consists of 5 tasks corresponding to the images with labels [0,1], [2,3], [4,5], [6,7], [8,9].

Parameters

• data_path – Where should the MNIST dataset be read from? If not existing, the dataset
will be downloaded into this folder.

• use_one_hot – Whether the class labels should be represented in a one-hot encoding.

• validation_size – The size of the validation set of each individual data handler.

• use_torch_augmentation (bool) – See docstring of class data.mnist_data.
MNISTData.

• num_classes_per_task (int) – Number of classes to put into one data handler. If 2, then
every data handler will include 2 digits.

• num_tasks (int, optional) – The number of data handlers that should be returned by
this function.

• trgt_padding (int, optional) – See docstring of class SplitMNIST.

Returns
A list of data handlers, each corresponding to a SplitMNIST object.

Return type
(list)

Split CIFAR-10/100 Dataset

The module data.special.split_cifar contains a wrapper for data handlers for the Split-CIFAR10/CIFAR100
task.

class hypnettorch.data.special.split_cifar.SplitCIFAR100Data(data_path, use_one_hot=False,
validation_size=1000,
use_data_augmentation=False,
use_cutout=False, labels=range(0,
10), full_out_dim=False)

Bases: CIFAR100Data

An instance of the class shall represent a single SplitCIFAR-100 task.

Parameters

• data_path – Where should the dataset be read from? If not existing, the dataset will be
downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size – The number of validation samples. Validation samples will be taking
from the training set (the first 𝑛 samples).

50 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• use_data_augmentation (optional) – Note, this option currently only applies to
input batches that are transformed using the class member data.dataset.Dataset.
input_to_torch_tensor() (hence, only available for PyTorch). Note, we are using the
same data augmentation pipeline as for CIFAR-10.

• use_cutout (bool) – See docstring of class data.cifar10_data.CIFAR10Data.

• labels – The labels that should be part of this task.

• full_out_dim – Choose the original CIFAR instead of the the new task output dimension.
This option will affect the attributes data.dataset.Dataset.num_classes and data.
dataset.Dataset.out_shape.

get_identifier()

Returns the name of the dataset.

transform_outputs(outputs)
Transform the outputs from the 100D CIFAR100 dataset into proper labels based on the constructor argu-
ment labels.

See data.special.split_mnist.SplitMNIST.transform_outputs() for more information.

Parameters
outputs – 2D numpy array of outputs.

Returns
2D numpy array of transformed outputs.

class hypnettorch.data.special.split_cifar.SplitCIFAR10Data(data_path, use_one_hot=False,
validation_size=1000,
use_data_augmentation=False,
use_cutout=False, labels=range(0, 2),
full_out_dim=False)

Bases: CIFAR10Data

An instance of the class shall represent a single SplitCIFAR-10 task.

Each instance will contain only samples of CIFAR-10 belonging to a subset of the labels.

Parameters
(....) – See docstring of class SplitCIFAR100Data.

get_identifier()

Returns the name of the dataset.

transform_outputs(outputs)
Transform the outputs from the 10D CIFAR10 dataset into proper labels based on the constructor argument
labels.

See data.special.split_mnist.SplitMNIST.transform_outputs() for more information.

Parameters
outputs (numpy.ndarray) – 2D numpy array of outputs.

Returns
2D numpy array of transformed outputs.

Return type
(numpy.ndarray)

1.3. Sequential, custom and special datasets 51

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

hypnettorch.data.special.split_cifar.get_split_cifar_handlers(data_path, use_one_hot=True,
validation_size=0,
use_data_augmentation=False,
use_cutout=False,
num_classes_per_task=10,
num_tasks=6)

This method will combine 1 object of the class data.cifar10_data.CIFAR10Data and 5 objects of the class
SplitCIFAR100Data.

The SplitCIFAR benchmark consists of 6 tasks, corresponding to the images in CIFAR-10 and 5 tasks from
CIFAR-100 corresponding to the images with labels [0-10], [10-20], [20-30], [30-40], [40-50].

Parameters

• data_path – Where should the CIFAR-10 and CIFAR-100 datasets be read from? If not
existing, the datasets will be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size – The size of the validation set of each individual data handler.

• use_data_augmentation (optional) – Note, this option currently only applies to
input batches that are transformed using the class member data.dataset.Dataset.
input_to_torch_tensor() (hence, only available for PyTorch).

• use_cutout (bool) – See docstring of class data.cifar10_data.CIFAR10Data.

• num_classes_per_task (int) – Number of classes to put into one data handler. For ex-
ample, if 2, then every data handler will include 2 digits.

If 10, then the first dataset will simply be CIFAR-10.

• num_tasks (int) – A number between 1 and 11 (assuming num_classes_per_task ==
10), specifying the number of data handlers to be returned. If num_tasks=6, then there will
be the CIFAR-10 data handler and the first 5 splits of the CIFAR-100 dataset (as in the usual
CIFAR benchmark for CL).

Returns
(list) A list of data handlers. The first being an instance of class data.cifar10_data.
CIFAR10Data and the remaining ones being an instance of class SplitCIFAR100Data.

1.3.2 Timeseries Datasets

Contents

• Timeseries Datasets

– Common Datasets

∗ Dataset for the sequential copy task

∗ Multilingual universal Dependencies Dataset

∗ Dataset for the Audioset task

∗ Stroke MNIST (SMNIST) Dataset

– Custom Datasets

52 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

∗ Dataset from random recurrent teacher networks

– Continual Learning Datasets

∗ Set of cognitive tasks

∗ Sequence of Stroke MNIST Samples (SeqSMNIST) Dataset

∗ Split Audioset Dataset

∗ Split SMNIST Dataset

Common Datasets

Dataset for the sequential copy task

A data handler for the copy task as described in:

https://arxiv.org/pdf/1410.5401.pdf

A typical usecase of this dataset is in an incremental learning setting. For instance, a sequence of tasks with increasing
lengths can be used in curriculum learning or continual learning.

The class contains a lot of options to modify the basic copy task. Many of those variations target the usecase continual
learning (rather than curriculum learning) by providing sets of distinct tasks with comparable difficulty. Note, these
variations typically extend the required input processing and are not limited to plain copying.

class hypnettorch.data.timeseries.copy_data.CopyTask(min_input_len, max_input_len, seq_width=7,
out_width=-1, num_train=100, num_test=100,
num_val=None, pat_len=-1,
scatter_pattern=False, permute_width=False,
permute_time=False, permute_xor=False,
permute_xor_iter=1,
permute_xor_separate=False,
random_pad=False, pad_after_stop=False,
pairwise_permute=False,
revert_output_seq=False, rseed=None,
rseed_permute=None, rseed_scatter=None)

Bases: SequentialDataset

Data handler for the sequential copy task.

In this task, a binary vector is presented as input, and the network has to learn to copy it. Such that the network
cannot rely on intermediate information, there is a delay between the end of the input presentation and the output
generation. The end of the input sequence is delimited by a binary bit, which is always zero except when the
sequence finishes. This flag should not be copied.

An instance of this class will represent copy task patterns of random length (by default) but fixed width (but see
option out_width). The length of input patterns will be sampled uniformly from the interval [min_input_len,
max_input_len]. Note that the actual length of the patterns pat_len might be smaller in the case where there
are a certain number of zero-valued timesteps within the input. As such, every sequence is characterised by the
following values:

• pat_len: the actual length of the binary pattern to be copied. Across this duration, half the pixels have
value of 1 and the other half have value 0.

• input_len: the length of input presentation up until the stop flag. It is equal to the pattern length plus the
number of zero-valued timesteps.

1.3. Sequential, custom and special datasets 53

https://arxiv.org/pdf/1410.5401.pdf

hypnettorch, Release 1.0

• seq_len: the length of the entire sequences, including input presentation, stop flag and output generation.
Therefore it is equal to the input length, plus one (stop flag), plus the pattern length (since during output
reconstruction we don’t care about reconstructing the zero-valued part of the input).

Caution: Manipulations such as permutations or scattering/masking will be applied online in
output_to_torch_tensor().

Parameters

• min_input_len (int) – The minimum length of an input sequence.

Note: The input length is the length of the presented input before the stop flag. It might
include both a pattern to be copied and a set of zero-valued timesteps that do not need to be
reconstructed.

• max_input_len (int) – The maximum length of a pattern.

• seq_width (int) – The width if each pattern.

Note: Each pattern will have a certain length (across time) and a certain width.

• out_width (int, optional) – If specified, a number smaller than seq_width is expected.
In this case, only the first out_width input features are expected to be copied (i.e., only those
occur as target output features).

• num_train (int) – Number of training samples.

• num_test (int) – Number of test samples.

• num_val (int, optional) – Number of validation samples.

• pat_len (int, optional) – The actual length of the pattern within the input sequence
(excluding zero-valued timesteps). By default, the value is -1meaning that the pattern length
is identical to the input length, and there are no zeroed timesteps. For other values, the
input sequences will be zero-padded after pat_len timesteps. Therefore, the input sequence
lengths remain the same, but the actual duration of the patterns is reduced. This manipulation
is useful to decouple sequence length and memory requirement for analysis.

Note: We define the number of timesteps that are not zero, and therefore for values different
than -1 with the current implementation we will obtain patterns of identical length (but
different input sequence length).

• scatter_pattern (bool) – Option only compatible with pat_len != -1. If activated,
the pattern is not concentrated at the beginning of the input sequence. Instead, the whole
input sequence will be filled with a random pattern (i.e., no padding is used) but only a fixed
and random (see option rseed_scatter) number of timesteps from the input sequence are
considered to create an output sequence of length pat_len.

• permute_width (boolean, optional) – If enabled, the generated pattern will be per-
muted along the width axis.

• permute_time (boolean, optional) – If enabled, the generated pattern will be permuted
along the temporal axis.

54 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• permute_xor (bool) – Only applicable if permute_width or permute_time is True. If
True, the permuted and unpermuted output pattern will be combined to a new output pattern
via a logical xor operation.

• permute_xor_iter (int) – Only applicable if permute_xor is set. If True, the internal
permutation is applied iteratively and XOR-ed with the previous target output to obtain a
final target output.

• permute_xor_separate (bool) – Only applicable if permute_xor is set and
permute_xor_iter > 1. If True, a separate permutation matrix is used per iteration de-
scribed by permute_xor_iter. In this case, we the input pattern is permute_xor_iter
times permuted via a separate permutation matrix and the resulting patterns are sequentially
XOR-ed with the original input pattern.

Hence, this can be viewed as follows: permute_xor_iter random input pixels are assigned
to each output pattern pixel. This output pattern pixel will be 1 if and only if the number of
ones in those input pixels is odd.

• random_pad (bool, optional) – If activated, the truncated part of the input (see option
pat_len) will be left as a random pattern, and not set to zero. Note that the loss computation
is unaffected by this option.

• pad_after_stop (bool) – This option will affect how option pat_len is handled and
therefore can only be used if pat_len is set. If True, pat_len will determine the length
of the input sequence (no padding applied before the stop bit). Therefore, the padding is
moved to after the stop bit and therewith part of the target output. I.e., the original input
sequence length determines the output sequence length which consists of zero padding and
the input pattern of length pat_len. Note, in this case, the options min_input_len and
max_input_len actually apply solely to the output.

• pairwise_permute (bool, optional) – This option is only used if some permutation is
activated. If enabled, it will force the permutation to be a pairwise switch between successive
pixels. Note that this operation is deterministic, and will therefore be identical for different
tasks, if more than one task is generated.

• revert_output_seq (bool, optional) – If enabled, it will revert output sequences along
the time dimension. Note that this operation is deterministic, and will therefore be identical
for different tasks, if more than one task is generated.

• rseed (int, optional) – If None, the current random state of numpy is used to generate
the data. Otherwise, a new random state with the given seed is generated.

• rseed_permute (int, optional) – Random seed for performing permutations of the
copy patterns. Only used if option permute_width or permute_time are activated. If
None, the current random state of numpy is used to generate the data. Otherwise, a new
random state with the given seed is generated.

• rseed_scatter (int, optional) – See option rseed. Random seed for determin-
ing which timesteps of the input sequence to use for the output pattern if option
scatter_pattern is activated.

static create_permutation_matrix(permute_time, permute_width, pat_len_perm, seq_width,
rstate_permute, pairwise_permute=False,
revert_output_seq=False)

Create a permutation matrix.

Parameters

1.3. Sequential, custom and special datasets 55

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• pairwise_permute (boolean, optional) – If True, the permutations correspond to
switching the position of neighboring pixels. For example 1234567 would become
2143657. If the number of timesteps is odd, the last timestep is left unmoved.

• revert_output_seq (boolean, optional) – If True, the output sequences will be in-
verted along the time dimension. I.e. a pattern 1234567 would become 7654321.

get_identifier()

Returns the name of the dataset.

get_out_pattern_bounds(sample_ids)
Get the start time step and length of the output pattern within the sequence.

Note, input sequences may have varying length (even though they are padded to the same length). Assume
we are considering a input of length 7, meaning that the total sequence would have the length 15 = 7 + 1 + 7
(input pattern presentation, stop bit, output pattern copying). In addition, assume that the maximum input
length is 10 (hence, the maximum input length is 21 = 10 + 1 + 10). In this case, all sequences are padded
to have length 21. For the sample in consideration (with input length 7), the output pattern sequence starts
at index 8 and has a length of 7, or less, if the input contains some zeroed values. Hence, these two number
would be returned for this sample.

Parameters
(....) – See docstring of method data.sequential_data.SequentialDataset.
get_in_seq_lengths().

Returns

Tuple containing:

• start_inds (numpy.ndarray): 1D array with the same length as sample_ids, which con-
tains the start index for output pattern in a given sample.

• lengths (numpy.ndarray): 1D array containing the lengths of the pattern per given sample.

Return type
(tuple)

get_zeroed_ts(sample_ids)
Get the number of zeroed timesteps in each input pattern.

Note, if scatter_pattern was activated in the constructor, then this number does not refer to the number
of padded steps in the input sequence but rather to the number of unused steps in the input sequence.
However, those unused steps will still contain random patterns. Similarly, if argument random_pad is
used.

Note, if pad_after_stop was activated, then the zeroed timesteps actually occur after the stop bit, i.e., in
the output part of the sequence.

Parameters
(....) – See docstring of method get_in_seq_lengths().

Returns
A 1D numpy array.

Return type
(numpy.ndarray)

output_to_torch_tensor(*args, **kwargs)
Similar to method input_to_torch_tensor(), just for dataset outputs.

56 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

Parameters
(....) – See docstring of method data.dataset.Dataset.
output_to_torch_tensor().

Returns
The given input y as PyTorch tensor. It has dimensions [T, B, *out_shape], where T is
the number of time steps (see attribute max_num_ts_out), B is the batch size and out_shape
refers to the output feature shape, see data.dataset.Dataset.out_shape.

Return type
(torch.Tensor)

property permutation

Getter for attribute permutation_

Multilingual universal Dependencies Dataset

A data handler for the multilingual universal dependencies dataset:

https://universaldependencies.org/

This dataset is a Part-of-Speech tagging dataset that assigns to each token in a sentence one of a set of universal
syntactic tags. We adapt this dataset to a Continual Learning scenario by considering Part-of-Speech tagging in different
languages as different tasks.

class hypnettorch.data.timeseries.mud_data.MUDData(task_data, vocabulary=None, tagset=None)
Bases: SequentialDataset

Datahandler for the multilingual universal dependencies dataset.

Parameters

• task_data – A preprocessed dataset structure. Please use function get_mud_handlers()
to create instances of this class.

• vocabulary (list or tuple, optional) – The vocabular, i.e., a list of words that al-
lows us to decode input sentences.

• tagset (list or tuple, optional) – The PoS tagset.

decode_batch(inputs, outputs, sample_ids=None)
Decode a batch of input and output samples into strings.

This method translates a batch of input and output sequences (consisting of vocabulary and tagset indices)
into actual sentences consisting of strings.

Note: This method is only applicable if vocabulary and tagset were provided to the constructor.

Parameters

• inputs (numpy.ndarray or torch.Tensor) – Input samples as provided to or returned
from method input_to_torch_tensor().

• outputs (numpy.ndarray or torch.Tensor) – Output samples as provided to or re-
turned from method output_to_torch_tensor().

• sample_ids (numpy.ndarray) – See method train_ids_to_indices(). If provided,
the returned sentences are cropped to the actual sequence length.

1.3. Sequential, custom and special datasets 57

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://universaldependencies.org/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

hypnettorch, Release 1.0

Returns

Tuple containing:

• in_words (list): List of list of strings, where each string corresponds to a word in the
corresponding input sentence of inputs.

• out_tags (list): List of list of strings, where each string corresponds to the output tag cor-
responding to the tag ID read from outputs.

Return type
(tuple)

get_identifier()

Returns the name of the dataset.

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Note: If sample_ids are provided, then padding will be reduced according to the sample within the
minibatch with the longest sequence length.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
See docstring of method data.sequential_dataset.SequentialDataset.
input_to_torch_tensor().

Return type
(torch.LongTensor)

output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
Identical to method data.sequential_dataset.SequentialDataset.
output_to_torch_tensor().

However, if sample_ids are provided, then the same padding behavior as elicited by method
input_to_torch_tensor() is performed.

hypnettorch.data.timeseries.mud_data.get_mud_handlers(data_path, num_tasks=5)
This function instantiates num_tasks objects of the class MUDData each of which will contain a PoS dataset for
a different language.

Parameters

• data_path (str) – See argument data_path of class data.timeseries.smnist_data.
SMNISTData. If not existing, the dataset will be downloaded into this folder.

• num_tasks (int, optional) – The number of data handlers that should be returned by
this function.

Returns
A list of data handlers, each corresponding to an object of class MUDData object.

Return type
(list)

58 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Dataset for the Audioset task

A data handler for the audioset dataset taken from:

https://research.google.com/audioset/download.html

Data were preprocessed with the script data.timeseries.structure_audioset and then uploaded to dropbox. If
this link becomes invalid, the data has to be preprocessed from scratch.

class hypnettorch.data.timeseries.audioset_data.AudiosetData(data_path, use_one_hot=True,
validation_size=0,
target_per_timestep=True,
rseed=None)

Bases: SequentialDataset

Datahandler for the audioset task.

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples.

• target_per_timestep (bool, optional) – If activated, the one-hot encoding of the cur-
rent image will be copied across the entire sequence. Else, there is a single target for the entire
sequence (rather than one per timestep.

• rseed (int, optional) – If None, the current random state of numpy is used to select a
validation set from the training data. Otherwise, a new random state with the given seed is
generated.

get_identifier()

Returns the name of the dataset.

Stroke MNIST (SMNIST) Dataset

A data handler for the stroke mnist data as discribed here:

https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data/

The data was preprocessed with the script data.timeseries.preprocess_smnist and then uploaded to dropbox.
If this link becomes invalid, the data has to be preprocessed from scratch.

class hypnettorch.data.timeseries.smnist_data.SMNISTData(data_path, use_one_hot=False,
validation_size=0,
target_per_timestep=True)

Bases: SequentialDataset

Datahandler for stroke MNIST.

Note: That the outputs are always provided as one-hot encodings of duration equal to one. One can
decide to make these targets span the entirety of the sequence (by repeating it over timesteps) by setting
target_per_timestep to True.

1.3. Sequential, custom and special datasets 59

https://research.google.com/audioset/download.html
https://www.dropbox.com/s/07dfeeuf5aq4w1h/audioset_data_balanced?dl=1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data/
https://www.dropbox.com/s/sadzc8qvjvexdtx/ss_mnist_data?dl=1

hypnettorch, Release 1.0

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taking from the training set (the first 𝑛 samples).

• target_per_timestep (bool) – If activated, the one-hot encoding of the current image
will be copied across the entire sequence. Else, there is a single target for the entire sequence
(rather than one per timestep.

get_identifier()

Returns the name of the dataset.

Custom Datasets

Dataset from random recurrent teacher networks

We consider a student-teacher setup. The dataset is meant for continual learning, such that an individual teacher
(individual task) is used to determine the computation of a subspace of the activations of a recurrent student network.

This is a synthetic dataset that will allow the manual construction of the optimal student network that solves all tasks
simultanously. As such, this student network can be compared to trained networks (either continually or in parallel on
multiple tasks).

To be more precise, we set the teacher to be an Elman-type recurrent network (see mnets.simple_rnn.SimpleRNN):

𝑟
(𝑘)
𝑡 = 𝜎(𝐴(𝑘)𝑟

(𝑘)
𝑡−1 + 𝑥𝑡)

𝑠
(𝑘)
𝑡 = 𝜎(𝐵(𝑘)𝑟

(𝑘)
𝑡)

𝑡
(𝑘)
𝑡 = 𝐶(𝑘)𝑠

(𝑘)
𝑡

Where 𝑘 is a unique task identifier (in the context of multiple teachers), 𝑥𝑡 is the network input at time 𝑡, the recurrent
state is initialized at zero 𝑟

(𝑘)
0 = 0 and 𝜎() is a user-defined non-linearity. The non-linear output computation 𝑠

(𝑘)
𝑡 is

optional.

We assume an input 𝑥𝑡 ∈ R𝑛in and a target dimensionality of 𝑛out. 𝐴(𝑘) ∈ R𝑛in×𝑛in , 𝐵(𝑘) ∈ R𝑛in×𝑛in and 𝐶(𝑘) ∈
R𝑛out×𝑛in are random matrices that determine the teacher network’s input-output mapping.

Having a task setup like this one can manually construct an RNN network that can solve multiple of such tasks to
perfection (assuming a task-specific output head). For instance, consider the following Elman-type RNN with task-
specific output head.

ℎ𝑡 = 𝜎(𝑊ℎℎℎ𝑡−1 + 𝑊𝑖ℎ𝑥𝑡 + 𝑏ℎ)

𝑜𝑡 = 𝜎(𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜)

𝑦
(𝑘)
𝑡 = 𝑊 (𝑘)𝑜𝑡 + 𝑏(𝑘)

With ℎ𝑡 ∈ R𝑛h being the hidden state (we also assume 𝑜𝑡 ∈ R𝑛h).

We can assign this network the following weights to ensure that all 𝐾 tasks are solved to perfection:

• 𝑏ℎ, 𝑏𝑜, 𝑏
(𝑘) = 0

60 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• 𝑊𝑖ℎ =

⎛⎜⎜⎜⎝
𝐼
...
𝐼
𝑂

⎞⎟⎟⎟⎠where 𝐼 ∈ R𝑛in×𝑛in refers to the identity matrix that simply copies the input into separate subspaces

of the hidden state

• The hidden-to-hidden weights would be block diagonal:

𝑊ℎℎ =

⎛⎜⎜⎜⎝
𝐴(1)

. . .
𝐴(𝐾)

𝑂

⎞⎟⎟⎟⎠
• The hidden-to-output weights would be block diagonal:

𝑊ℎ𝑜 =

⎛⎜⎜⎜⎝
𝐵(1)

. . .
𝐵(𝐾)

𝑂

⎞⎟⎟⎟⎠
• The task-specific output matrix would be

𝑊 (𝑘) =
(︀
𝑂 . . . 𝐶(𝑘) . . . 𝑂

)︀
class hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher(num_train=1000, num_test=100,

num_val=None, n_in=7,
n_out=7, sigma='tanh',
mat_A=None, mat_B=None,
mat_C=None, orth_A=False,
rank_A=-1, max_sv_A=-1.0,
no_extra_fc=False,
inputs=None, input_range=(-1,
1), n_ts_in=10, n_ts_out=-1,
rseed=None)

Bases: SequentialDataset

Create a dataset from a random recurrent teacher.

Parameters

• num_train (int) – Number of training samples.

• num_test (int) – Number of test samples.

• num_val (int, optional) – Number of validation samples.

• n_in (int) – Dimensionality of inputs 𝑥𝑡.

• n_out (int) – Dimensionality of outputs 𝑦(𝑘)𝑡 .

• sigma (str) – Name of the nonlinearity 𝜎() to be used.

– 'linear'

– 'sigmoid'

– 'tanh'

1.3. Sequential, custom and special datasets 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

• mat_A (numpy.ndarray, optional) – A numpy array of shape [n_in, n_in] represent-
ing matrix 𝐴(𝑘). If not specified, a random matrix will be generated.

• mat_B (numpy.ndarray, optional) – A numpy array of shape [n_in, n_in] represent-
ing matrix 𝐵(𝑘). If not specified, a random matrix will be generated.

• mat_C (numpy.ndarray, optional) – A numpy array of shape [n_out, n_in] repre-
senting matrix 𝐶(𝑘). If not specified, a random matrix will be generated.

• orth_A (bool) – If 𝐴(𝑘) is randomly generated and this option is activated, then 𝐴(𝑘) will
be initialized as an orthogonal matrix.

• rank_A (int, optional) – The rank of the randomly generated matrix 𝐴(𝑘). Note, this
option is mutually exclusive with option orth_A.

• max_sv_A (float, optional) – The maximum singular value of the randomly generated
matrix 𝐴(𝑘). Note, this option is mutually exclusive with option orth_A.

• no_extra_fc – If True, the hidden fully-connected layer using matrix 𝐵(𝑘) will be omitted
when computed targets from the teacher. Hence, the teacher computation becomes:

𝑟
(𝑘)
𝑡 = 𝜎(𝐴(𝑘)𝑟

(𝑘)
𝑡−1 + 𝑥𝑡)

𝑡
(𝑘)
𝑡 = 𝐶(𝑘)𝑟

(𝑘)
𝑡

• inputs (numpy.ndarray, optional) – The inputs 𝑥𝑡 to be used. Has to be an array
of shape [n_ts_in, N, n_in] with N = num_train + num_test + (0 if num_val
is None else num_val).

• input_range (tuple) – Tuple of integers. Used as ranges for a uniform distribution from
which input samples 𝑥𝑡 are drawn.

• n_ts_in (int) – The number of input timesteps.

• n_ts_out (int, optional) – The number of output timesteps. Can be greater than
n_ts_in. In this case, the inputs at time greater than n_ts_in will be zero.

• rseed (int, optional) – If None, the current random state of numpy is used to generate
the data. Otherwise, a new random state with the given seed is generated.

static construct_ideal_student(net, dhandlers)
Set the weights of an RNN such that it perfectly solves all tasks represented by the teachers in dhandlers.

Note: This method only works properly if the RNN net is properly setup such that its computation
resembles the target computation of the individual teachers. I.e., an ideal student can be constructed by
only modifying the weights.

Parameters

• net (mnets.simple_rnn.SimpleRNN) – The student RNN whose weights will be over-
written. Importantly, this method does not ensure that the teacher computation is compat-
ible with the given student network.

Note: The internal weights of the network are modified in-place.

• dhandlers (list) – List of datasets from teachers (i.e., instances of class
RndRecTeacher). The RNN net must have at least as many output heads as
len(dhandlers).

62 Chapter 1. Custom data handlers for common ML datasets

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

get_identifier()

Returns the name of the dataset.

property mat_A

The teacher matrix 𝐴(𝑘).

Type
numpy.ndarray

property mat_B

The teacher matrix 𝐵(𝑘).

Type
numpy.ndarray

property mat_C

The teacher matrix 𝐶(𝑘).

Type
numpy.ndarray

Continual Learning Datasets

Set of cognitive tasks

A data handler for cognitive tasks as implemented in Masse et al (PNAS). The user can construct individual datasets
with this data handler and use each of these datasets to train a model in a continual leraning setting.

class hypnettorch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks(task_id=0,
num_train=80,
num_test=20,
num_val=None,
rstate=None)

Bases: Dataset

An instance of this class shall represent a one of the 20 cognitive tasks.

Generate a new dataset.

We use the MultiStimulus class from Masse el al. to genereate the inputs and outputs of different cognitive tasks
in accordance with the data handling structures of the hnet code base.

Note that masks (part of the Masse et al. trial generator) will be handled independently of this data handler.

Parameters

• num_train (int) – Number of training samples.

• num_test (int) – Number of test samples.

• num_val (optional) – Number of validation samples.

• rstate – If None, the current random state of numpy is used to generate the data.

get_identifier()

Returns the name of the dataset.

1.3. Sequential, custom and special datasets 63

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

input_to_torch_tensor(x, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
This method can be used to map the internal numpy arrays to PyTorch tensors.

Parameters
(....) – See docstring of method data.dataset.Dataset.
input_to_torch_tensor().

Returns
The given input x as 3D PyTorch tensor. It has dimensions [T, B, N], where T is the number
of time steps per stimulus, B is the batch size and N the number of input units.

Return type
(torch.Tensor)

output_to_torch_tensor(y, device, mode='inference', force_no_preprocessing=False, sample_ids=None)
Similar to method input_to_torch_tensor(), just for dataset outputs.

Parameters
(....) – See docstring of method data.dataset.Dataset.
output_to_torch_tensor().

Returns
A tensor of shape [T, B, C], where T is the number of time steps per stimulus, B is the batch
size and C the number of classes.

Return type
(torch.Tensor)

Sequence of Stroke MNIST Samples (SeqSMNIST) Dataset

A data handler to generate a set of sequential stroke MNIST tasks for continual learning. The used stroke MNIST data
was already preprocessed with the script data.timeseries.preprocess_smnist (see also the corresponding data
handler in data.timeseries.smnist_data).

The task

Given a sequence of two smnist digits of length n (e.g. 2,5,5,2,2with n=5), classify which of the 2**n possible binary
sequences (classes) the presented sequence belongs to. E.g., for n=3 the number of classes would be 8 (corresponding
to all possible sequences with two digits (0 and 1 here): 000, 001, 010, 100, 011, 110, 101, 111.

The individual tasks of the task family differ in which digits are used to generate the binary sequences. Considering all
possible pairs of digits we can generate (10**2-10) / 2 = 45 tasks.

class hypnettorch.data.timeseries.seq_smnist.SeqSMNIST(data_path, use_one_hot=True,
num_train=1600, num_test=400,
num_val=0, target_per_timestep=True,
sequence_length=4, digits=(0, 1),
two_class=False, upsample_control=False,
fix_class_partition=False, rseed=None)

Bases: SequentialDataset

Datahandler for one sequential stroke MNIST task (as described above).

Note: That the outputs are always provided as one-hot encodings of duration equal to one. One can
decide to make these targets span the entirety of the sequence (by repeating it over timesteps) by setting
target_per_timestep to True.

64 Chapter 1. Custom data handlers for common ML datasets

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Parameters

• data_path (str) – Where should the dataset be read from? If not existing, the dataset will
be downloaded into this folder.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• num_train (int) – Number of training samples to be generated.

• num_test (int) – Number of test samples to be generated.

• num_val (int) – Number of validation samples to be generated.

• target_per_timestep (bool) – If activated, the one-hot encoding of the current image
will be copied across the entire sequence. Else, there is a single target for the entire sequence
(rather than one per timestep.

• sequence_length (int) – The length of the binary sequence to be classified. This also
affects the number of classes which is 2**n.

• digits (tuple) – The two digits that shall be used for generating the binary sequence.

• two_class (bool) – When true, instead of classifying each possible sequence individually,
sequences are randomly grouped into two classes. This makes the number of classes (and
therefore the chance level) independent of the sequence length.

• upsample_control (bool) – If True, instead of building sequences of digits, we upsample
single digits by a factor given by seq_len.

• fix_class_partition (bool) – TODO

• rseed (int) – Seed for numpy random state.

get_identifier()

Returns the name of the dataset.

Split Audioset Dataset

The module data.timeseries.split_audioset contains a wrapper for data handlers for the SplitAudioset task. It
is based on the module data.special.split_mnist.

class hypnettorch.data.timeseries.split_audioset.SplitAudioset(data_path, use_one_hot=True,
validation_size=1000,
target_per_timestep=True,
rseed=None, labels=[0, 1],
full_out_dim=False)

Bases: AudiosetData

An instance of the class shall represent a SplitAudioset task.

Parameters

• (....) – See docstring of class data.timeseries.audioset_data.AudiosetData.

• validation_size (int) – The size of the validation set of each individual data handler.

• labels (list) – The labels that should be part of this task.

• full_out_dim (bool) – Choose the original Audioset labels instead of the new task output
dimension. This option will affect the attributes data.dataset.Dataset.num_classes
and data.dataset.Dataset.out_shape.

1.3. Sequential, custom and special datasets 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

get_identifier()

Returns the name of the dataset.

transform_outputs(outputs)
Transform the outputs from the 100D Audioset dataset into proper labels based on the constructor argument
labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,. . . ,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

Parameters
outputs – 2D numpy array of outputs.

Returns
2D numpy array of transformed outputs.

hypnettorch.data.timeseries.split_audioset.get_split_audioset_handlers(data_path,
use_one_hot=True,
validation_size=0, tar-
get_per_timestep=True,
num_classes_per_task=10,
num_tasks=5,
rseed=None)

This function instantiates num_tasks objects of the class AudiosetData which will contain a disjoint set of
labels.

The SplitAudioset task consists of num_tasks tasks which consist of a classification problem with
num_classes_per_task classes from our preprocessed Audioset data set.

Parameters

• (....) – See docstring of class data.timeseries.audioset_data.AudiosetData.

• validation_size (int) – The size of the validation set of each individual data handler.

• num_classes_per_task (int) – Number of classes to put into one data handler. If 2, then
every data handler will include 2 classes.

• num_tasks (int) – The number of data handlers that should be returned by this function.

• rseed (int, optional) – The rseed is passed when constructing instances of class
SplitAudioset. In addition, it is used to shuffle the classes before splitting Audioset into
tasks.

Returns
A list of data handlers, each corresponding to a SplitAudioset object.

Return type
(list)

66 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Split SMNIST Dataset

The module data.timeseries.split_smnist contains a wrapper for data handlers for a set of SplitSMNIST tasks
(a partitioning of classes from the data.timeseries.smnist_data.SMNISTData dataset). The implementation is
based on the module data.special.split_mnist.

class hypnettorch.data.timeseries.split_smnist.SplitSMNIST(data_path, use_one_hot=False,
validation_size=1000,
target_per_timestep=True, labels=[0,
1], full_out_dim=False)

Bases: SMNISTData

An instance of the class shall represent a SplitSMNIST task.

Parameters

• data_path (str) – See argument data_path of class data.timeseries.smnist_data.
SMNISTData.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The number of validation samples. Validation samples will be
taken from the training set (the first 𝑛 samples).

• target_per_timestep (str) – See argument target_per_timestep of class data.
timeseries.smnist_data.SMNISTData.

• labels (list) – The labels that should be part of this task.

• full_out_dim (bool) – Choose the original SMNIST instead of the new task output di-
mension. This option will affect the attributes data.dataset.Dataset.num_classes and
data.dataset.Dataset.out_shape.

get_identifier()

Returns the name of the dataset.

transform_outputs(outputs)
Transform the outputs from the 10D MNIST dataset into proper labels based on the constructor argument
labels.

I.e., the output will have len(labels) classes.

Example

Split with labels [2,3]

1-hot encodings: [0,0,0,1,0,0,0,0,0,0] -> [0,1]

labels: 3 -> 1

Parameters
outputs – 2D numpy array of outputs.

Returns
2D numpy array of transformed outputs.

1.3. Sequential, custom and special datasets 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

hypnettorch.data.timeseries.split_smnist.get_split_smnist_handlers(data_path,
use_one_hot=True,
validation_size=0,
target_per_timestep=True,
num_classes_per_task=2,
num_tasks=None)

This function instantiates 5 objects of the class SplitSMNIST which will contain a disjoint set of labels.

The SplitSMNIST task consists of 5 tasks corresponding to stroke trajectories for the images with labels [0,1],
[2,3], [4,5], [6,7], [8,9].

Parameters

• data_path (str) – See argument data_path of class data.timeseries.smnist_data.
SMNISTData.

• use_one_hot (bool) – Whether the class labels should be represented in a one-hot encod-
ing.

• validation_size (int) – The size of the validation set of each individual data handler.

• target_per_timestep (str) – See argument target_per_timestep of class data.
timeseries.smnist_data.SMNISTData.

• num_classes_per_task (int) – Number of classes to put into one data handler. If 2, then
every data handler will include 2 digits.

• num_tasks (int, optional) – The number of data handlers that should be returned by
this function.

Returns

A list of data handlers, each corresponding to a
SplitSMNIST object.

Return type
(list)

See documentation of subpackages special and timeseries.

68 Chapter 1. Custom data handlers for common ML datasets

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER

TWO

HYPERNETWORKS

Contents

• Hypernetworks

– Hypernetwork Interface

– Chunked Deconvolutional Hypernetwork with Self-Attention Layers

– Chunked MLP - Hypernetwork

– Deconvolutional Hypernetwork with Self-Attention Layers

– Hypernetwork-container that wraps a mixture of hypernets

– Helper functions for hypernetworks

– Hypernetwork-wrapper for input-preprocessing and output-postprocessing

– MLP - Hypernetwork

– Example Instantiations of a Structured Chunked MLP - Hypernetwork

– Structured Chunked MLP - Hypernetwork

A hypernetwork is a neural network that produces the weights of another network. As such, it can be seen as a specific
type of main network (aka neural network). Therefore, each hypernetwork has a specific interface hypnettorch.
hnets.hnet_interface.HyperNetInterface which is derived from the main network interface hypnettorch.
mnets.mnet_interface.MainNetInterface.

Note: All hypernetworks in this subpackage implement the abstract interface hypnettorch.hnets.
hnet_interface.HyperNetInterface to provide a consistent interface for users.

2.1 Hypernetwork Interface

The module hypnettorch.hnets.hnet_interface contains an interface for hypernetworks.

A hypernetworks is a special type of neural network that produces the weights of another neural network (called the
main or target networks, see hypnettorch.mnets.mnet_interface). The name “hypernetworks” was introduced
in

Ha et al., “Hypernetworks”, 2016. <https://arxiv.org/abs/1609.09106>

69

https://arxiv.org/abs/1609.09106

hypnettorch, Release 1.0

The interface ensures that we can consistently use different types of these networks without knowing their specific
implementation details (as long as we only use functionalities defined in class HyperNetInterface).

class hypnettorch.hnets.hnet_interface.HyperNetInterface

Bases: MainNetInterface

A general interface for hypernetworks.

add_to_uncond_params(dparams, params=None)
Add perturbations to unconditional parameters.

This method simply adds a perturbation dparams (𝑑𝜃) to the unconditional parameters 𝜃.

Parameters

• dparams (list) – List of tensors.

• params (list, optional) – List of tensors. If unspecified, attribute
unconditional_params is taken instead. Otherwise, the method simply returns
params + dparams.

Returns
List were elements of dparams and unconditional params (or params) are summed together.

Return type
(list)

property conditional_param_shapes

A list of lists of integers denoting the shape of every parameter tensor belonging to the con-
ditional parameters associated with this hypernetwork (i.e., the complement of those returned by
unconditional_param_shapes). Note, the returned list is a subset of the shapes maintained
in hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes and is independent
whether these parameters are internally maintained (i.e., occuring within conditional_params).

Type
list

property conditional_param_shapes_ref

A list of integers that has the same length as conditional_param_shapes. Each entry represents an
index within attribute hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes.

It can be used to gain access to meta information about conditional parameters via attribute hypnettorch.
mnets.mnet_interface.MainNetInterface.param_shapes_meta.

Type
list

property conditional_params

The complement of the internally maintained parameters hold by attribute unconditional_params.

A typical example of these parameters are embedding vectors. In continual learning, for instance, there
could be a separate task- embedding per task used as hypernet input, see

von Oswald et al., “Continual learning with hypernetworks”, ICLR 2020. https://arxiv.org/abs/
1906.00695

Note: This attribute is None if there are no conditional parameters that are internally maintained.

Type
list or None

70 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://arxiv.org/abs/1906.00695
https://arxiv.org/abs/1906.00695
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

convert_out_format(hnet_out, src_format, trgt_format)
Convert the hypernetwork output into another format.

This is a helper method to easily convert the output of a hypernetwork into different formats. Cf. argument
ret_format of method forward().

Parameters

• hnet_out (list or torch.Tensor) – See return value of method forward().

• src_format (str) – The format of argument hnet_out. See argument ret_format of
method forward().

• trgt_format (str) – The target format in which hnet_out should be converted. See
argument ret_format of method forward().

Returns

The input hnet_out converted into the
target format trgt_format.

Return type
(list or torch.Tensor)

abstract forward(uncond_input=None, cond_input=None, cond_id=None, weights=None,
distilled_params=None, condition=None, ret_format='squeezed')

Perform a pass through the hypernetwork.

Parameters

• uncond_input (optional) – The unconditional input to the hypernetwork.

Note: Not all scenarios require a hypernetwork with unconditional inputs. For instance,
a task-conditioned hypernetwork only receives a task-embedding (a conditional input) as
input.

• cond_input (optional) – If applicable, the conditional input to the hypernetwork.

• cond_id (int or list, optional) – The ID of the condition to be applied. Only ap-
plicable if conditional inputs/weights are maintained internally and conditions are discrete.

Can also be a list of IDs if a batch of weights should be produced.

Condition IDs have to be between 0 and num_conditions.

Note: Option is mutually exclusive with option cond_input.

• weights (list or dict, optional) – List of weight tensors, that are used as hyper-
network parameters. If not all weights are internally maintained, then this argument is
non-optional.

If a list is provided, then it either has to match the length of hypnettorch.
mnets.mnet_interface.MainNetInterface.hyper_shapes_learned (if specified)
or the length of attribute hypnettorch.mnets.mnet_interface.MainNetInterface.
param_shapes.

If a dict is provided, it must have at least one of the following keys specified: -
'uncond_weights' (list): Contains unconditional weights. - 'cond_weights' (list):
Contains conditional weights.

2.1. Hypernetwork Interface 71

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://arxiv.org/abs/1906.00695
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

hypnettorch, Release 1.0

• distilled_params (optional) – See docstring of method hypnettorch.mnets.
mnet_interface.MainNetInterface.forward().

• condition (optional) – See docstring of method hypnettorch.mnets.
mnet_interface.MainNetInterface.forward().

• ret_format (str) – The format in which the generated weights are returned. The follow-
ing options are available.

– 'flattened': The hypernet output will be a tensor of shape [batch_size,
num_outputs] (see num_outputs).

– 'sequential': A list of length batch size is returned that contains lists of length
len(target_shapes), which contain tensors with shapes determined by attribute
target_shapes. Hence, each entry of the returned list contains the weights for one
sample in the input batch.

– 'squeezed': Same as 'sequential', but if the batch size is 1, the list will be un-
packed, such that a list of tensors is returned (rather than a list of list of tensors).

Example

Assume target_shapes to be [[10, 5], [10]] and cond_input to be the only input
to the hypernetwork, which is a batch of embeddings [B, E], where B is the batch size
and E is the embedding size.

Note, num_outputs = 60 in this case (cmp. num_outputs).

If 'flattened' is used, a tensor of shape [B, 60] is returned. If 'sequential'
or 'squeezed' is used and B > 1 (e.g., B=3), then a list of lists of tensors (here de-
noted by their shapes) is returned [[[10, 5], [10]], [[10, 5], [10]], [[10,
5], [10]]]. However, if B == 1 and 'squeezed' is used, then a list of tensors is re-
turned, e.g., [[10, 5], [10]].

Returns
See description of argument ret_format.

Return type
(list or torch.Tensor)

get_task_emb(task_id)
Returns the task_id-th element from attribute conditional_params.

Deprecated since version 1.0: Please access elements of attribute conditional_params directly, as the
conditional parameters do not have to correspond to task embeddings.

Parameters
task_id (int) – Determines which element of conditional_params should be returned.

Returns
(torch.nn.Parameter)

get_task_embs()

Returns attribute conditional_params.

Deprecated since version 1.0: Please access attribute conditional_params directly, as the conditional
parameters do not have to correspond to task embeddings.

Returns
(list or None)

72 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

property num_known_conds

The number of conditions known to this hypernetwork. If the number of conditions is discrete and internally
maintained by the hypernetwork, then this attribute specifies how many conditions the hypernet manages.

Note: The option does not have to agree with the length of attribute conditional_params. For instance,
in certain cases there are multiple conditional weights maintained per condition.

Type
int

property num_outputs

The total number of output neurons (number of weights generated for the target network). This quantity
can be computed based on attribute target_shapes.

Type
int

property target_shapes

A list of list of integers representing the shapes of weight tensors generated, i.e., the hypernet output, which
could be, for instance, the mnets.mnet_interface.MainNetInterface.hyper_shapes_learned of
another network whose weights this hypernetwork is producing.

Type
list

property unconditional_param_shapes

A list of lists of integers denoting the shape of every parameter tensor belonging to the unconditional
parameters associated with this hypernetwork. Note, the returned list is a subset of the shapes main-
tained in hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes and is indepen-
dent whether these parameters are internally maintained (i.e., occuring within unconditional_params).

Type
list

property unconditional_param_shapes_ref

A list of integers that has the same length as unconditional_param_shapes. Each entry represents an
index within attribute hypnettorch.mnets.mnet_interface.MainNetInterface.param_shapes.

Type
list

property unconditional_params

Internally maintained parameters of the hypernetwork excluding parameters that may be specific to a given
condition, e.g., task embeddings in continual learning.

Hence, it is the portion of parameter tensors from attribute mnets.mnet_interface.
MainNetInterface.internal_params that is not specific to a certain task/condition.

Note: This attribute is None if there are no unconditional parameters that are internally maintained.

2.1. Hypernetwork Interface 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Example

An example use-case for a hypernetwork ℎ could be the following: ℎ(𝑥, 𝑒𝑖; 𝜃), where 𝑥 is an arbitrary input,
𝑒𝑖 is a learned embedding (condition) and 𝜃 are the internal “unconditional” parameters of the hypernet-
work. In some cases (for simplicity), the conditions 𝑒𝑖 as well as the parameters 𝜃 are maintained internally
by this class. This attribute can be used to gain access to the “unconditional” parameters 𝜃, while mnets.
mnet_interface.MainNetInterface.internal_paramswould return all “conditional” parameters 𝑒𝑖
as well as the “unconditional” parameters 𝜃.

Type
list or None

property unconditional_params_ref

A list of integers that has the same length as unconditional_params. Each entry represents an index
within attribute hypnettorch.mnets.mnet_interface.MainNetInterface.internal_params.

If unconditional_params is None, the this attribute is None as well.

Example

Using an instance hnet that implements this interface, the following is True.

hnet.internal_params[hnet.unconditional_params_ref[i]] is hnet.
→˓unconditional_params[i]

Note: This attribute has different semantics compared to unconditional_param_shapes_ref
which points to locations within hypnettorch.mnets.mnet_interface.MainNetInterface.
param_shapes, wheras this attribute points to locations within hypnettorch.mnets.mnet_interface.
MainNetInterface.internal_params.

Type
list or None

2.2 Chunked Deconvolutional Hypernetwork with Self-Attention Lay-
ers

The module hnets.chunked_deconv_hnet implements a chunked version of the transpose convolutional hypernet-
work represented by class hnets.deconv_hnet.HDeconv (similar as to hnets.chunked_mlp_hnet.ChunkedHMLP
represents a chunked version of the full hypernetwork hnets.mlp_hnet.HMLP).

Therefore, an instance of class ChunkedHDeconv manages internally an instance of class hnets.deconv_hnet.
HDeconv, which is invoked multiple time with a different additional input (the so called chunk embedding) to pro-
duce a chunk of the target weights at a time, which are later put together. See description of module hnets.
chunked_mlp_hnet for more details.

Note: This type of hypernetwork is completely agnostic to the architecture of the target network. The splits happen at
arbitrary locations in the flattened target network weight vector.

74 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

class hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv(target_shapes, hyper_img_shape,
chunk_emb_size=8,
cond_chunk_embs=False,
uncond_in_size=0, cond_in_size=8,
num_layers=5, num_filters=None,
kernel_size=5, sa_units=(1, 3),
verbose=True, activation_fn=ReLU(),
use_bias=True,
no_uncond_weights=False,
no_cond_weights=False,
num_cond_embs=1,
use_spectral_norm=False,
use_batch_norm=False)

Bases: Module, HyperNetInterface

Implementation of a chunked deconvolutional hypernet.

The target_shapes will be flattened and split into chunks of size chunk_size = np.
prod(hyper_img_shape). In total, there will be np.ceil(self.num_outputs/chunk_size) chunks,
where the last chunk produced might contain a remainder that is discarded.

Each chunk has it’s own chunk embedding that is fed into the underlying hypernetwork.

Note: It is possible to set uncond_in_size and cond_in_size to zero if cond_chunk_embs is True.

(....)

See attributes of class hnets.chunked_mlp_hnet.ChunkedHMLP.

Parameters

• (....) – See constructor arguments of class hnets.deconv_hnet.HDeconv.

• chunk_emb_size (int) – See constructor arguments of class hnets.chunked_mlp_hnet.
ChunkedHMLP.

• cond_chunk_embs (bool) – See constructor arguments of class hnets.
chunked_mlp_hnet.ChunkedHMLP.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

property chunk_emb_size

Getter for read-only attribute chunk_emb_size.

property cond_chunk_embs

Getter for read-only attribute cond_chunk_embs.

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters
(....) – See docstring of method hnets.chunked_mlp_hnet.ChunkedHMLP.
forward().

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

2.2. Chunked Deconvolutional Hypernetwork with Self-Attention Layers 75

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Return type
(list or torch.Tensor)

get_chunk_emb(chunk_id=None, cond_id=None)
Get the chunk_id-th chunk embedding.

Parameters
(....) – See docstring of method hnets.chunked_mlp_hnet.ChunkedHMLP.
get_chunk_emb().

Returns
(torch.nn.Parameter)

get_cond_in_emb(cond_id)
Get the cond_id-th (conditional) input embedding.

Parameters
(....) – See docstring of method hnets.deconv_hnet.HDeconv.get_cond_in_emb().

Returns
(torch.nn.Parameter)

property num_chunks

Getter for read-only attribute num_chunks.

training: bool

2.3 Chunked MLP - Hypernetwork

The module hnets.chunked_mlp_hnet contains a Chunked Hypernetwork, that uses a full hypernetwork (see hnets.
mlp_hnet.HMLP) to produce one chunk of the output weights at a time.

The hypernetwork ℎ𝜃(𝑒) (with input 𝑒) operates as follows. The target outputs (see hnets.hnet_interface.
HyperNetInterface.target_shapes) are flattened and split into equally sized chunks. Those chunks are sepa-
rately generated by an internal full hypernetwork ℎ′

𝜃′(𝑒, 𝑐) (that is hidden from the user), where 𝑐 denotes the chunk
embedding, which are internally maintained and chunk-specific.

Note: This type of hypernetwork is completely agnostic to the architecture of the target network. The splits happen at
arbitrary locations in the flattened target network weight vector.

class hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP(target_shapes, chunk_size, chunk_emb_size=8,
cond_chunk_embs=False, uncond_in_size=0,
cond_in_size=8, layers=(100, 100),
verbose=True, activation_fn=ReLU(),
use_bias=True, no_uncond_weights=False,
no_cond_weights=False, num_cond_embs=1,
dropout_rate=-1, use_spectral_norm=False,
use_batch_norm=False)

Bases: Module, HyperNetInterface

Implementation of a chunked fully-connected hypernet.

The target_shapes will be flattened and split into chunks of size chunk_size. In total, there will be np.
ceil(self.num_outputs/chunk_size) chunks, where the last chunk produced might contain a remainder
that is discarded.

76 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

Each chunk has it’s own chunk embedding that is fed into the underlying hypernetwork.

Note: It is possible to set uncond_in_size and cond_in_size to zero if cond_chunk_embs is True.

Parameters

• (....) – See constructor arguments of class hnets.mlp_hnet.HMLP.

• chunk_size (int) – The chunk size, i.e, the number of weights produced by individual for-
ward passes of the internally maintained instance of a full hypernet (see hnets.mlp_hnet.
HMLP) upon receiving a chunk embedding).

• chunk_emb_size (int) – The size of a chunk embedding.

• cond_chunk_embs (bool) – Whether chunk embeddings are unconditional (False) or con-
ditional (True) parameters. See constructor argument cond_chunk_embs.

Note: Embeddings will be initialized with a normal distribution using zero mean and unit
variance.

• cond_chunk_embs – Consider chunk embeddings to be conditional. In this case, there will
be a different set of chunk embeddings per condition (specified via num_cond_embs).

If False, there will be a total of num_chunks chunk embeddings that are maintained within
hnets.hnet_interface.HyperNetInterface.unconditional_param_shapes.
If True, there will be num_cond_embs * self.num_chunks chunk embed-
dings that are maintained within hnets.hnet_interface.HyperNetInterface.
conditional_param_shapes. However, if num_cond_embs == 0, then chunk embed-
dings have to be provided in a special way to the forward()method (see the corresponding
argument weights).

Initializes internal Module state, shared by both nn.Module and ScriptModule.

apply_chunked_hyperfan_init(method='in', use_xavier=False, uncond_var=1.0, cond_var=1.0,
eps=1e-05, cemb_normal_init=False, mnet=None, target_vars=None)

Initialize the network using a chunked hyperfan init.

Inspired by the method Hyperfan Init which we implemented for the MLP hypernetwork in method hnets.
mlp_hnet.HMLP.apply_hyperfan_init(), we heuristically developed a better initialization method for
chunked hypernetworks.

Unfortunately, the Hyperfan Init method from the paper does not apply to this kind of hypernetwork, since
we reuse the same hypernet output head for the whole main network.

Luckily, we can provide a simple heuristic. Similar to Meyerson & Miikkulainen we play with the variance
of the input embeddings to affect the variance of the output weights.

In a chunked hypernetwork, the input for each chunk is identical except for the chunk embeddings c. Let
e denote the remaining inputs to the hypernetwork, which are identical for all chunks. Then, assuming the
hypernetwork was initialized via fan-in init, the variance of the hypernetwork output v can be written as
follows (see documentation of method hnets.mlp_hnet.HMLP.apply_hyperfan_init()):

Var(𝑣) =
𝑛𝑒

𝑛𝑒 + 𝑛𝑐
Var(𝑒) +

𝑛𝑐

𝑛𝑒 + 𝑛𝑐
Var(𝑐)

2.3. Chunked MLP - Hypernetwork 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://openreview.net/forum?id=H1lma24tPB
https://arxiv.org/abs/1906.00097

hypnettorch, Release 1.0

Hence, we can achieve a desired output variance Var(𝑣) by initializing the chunk embeddings c via the
following variance:

Var(𝑐) = max
{︁

0,
1

𝑛𝑐

[︀
(𝑛𝑒 + 𝑛𝑐)Var(𝑣) − 𝑛𝑒Var(𝑒)

]︀}︁
Now, one important question remains. How do we pick a desired output variance Var(𝑣) for a chunk?

Note, a chunk may include weights from several layers. The likelihood for this to happen depends on the
main net architecture and the chunk size (see constructor argument chunk_size). The smaller the chunk
size, the less likely it is that a chunk will contain elements from multiple main net weight tensors.

In case each chunk would contain only weights from one main net weight tensor, we could simply pick the
variance Var(𝑣) that would have been chosen by a main net initialization method (such as Xavier).

In case a chunk contains contributions from several main net weight tensors, we apply the following heuris-
tic. If a chunk contains contributions of a set of main network weight tensors 𝑊1, . . . ,𝑊𝐾 with relative
contribution sizes𝑛1, . . . , 𝑛𝐾 such that 𝑛1+ · · ·+𝑛𝐾 = 𝑛𝑣 where 𝑛𝑣 denotes the chunk size and if the cor-
responding main network initialization method would require init variances Var(𝑤1), . . . ,Var(𝑤𝐾), then
we simply request a weighted average as follow:

Var(𝑣) =
1

𝑛𝑣

𝐾∑︁
𝑘=1

𝑛𝑘Var(𝑤𝑘)

What about bias vectors? Usually, the variance analysis applied to Xavier or Kaiming init assumes that
biases are initialized to zero. This is not possible in this setting, as it would require assigning a negative
variance to c. Instead, we follow the default PyTorch initialization (e.g., see method reset_parameters
in class torch.nn.Linear). There, bias vectors are initialized uniformly within a range of ± 1√

𝑓in
where

𝑓in refers to the fan-in of the layer. This type of initialization corresponds to a variance of Var(𝑣) = 1
3𝑓in

.

Note: All hypernet inputs are assumed to be zero-mean random variables.

Note: To avoid that the variances with which chunks are initialized have to be clipped (because they are
too small or even negative), the variance of the remaining hypernet inputs should be properly scaled. In
general, one should adhere the following rule

Var(𝑒) <
𝑛𝑒 + 𝑛𝑐

𝑛𝑒
Var(𝑣)

This method will calculate and print the maximum value that should be chosen for Var(𝑒) and will print
warnings if variances have to be clipped.

Parameters

• (....) – See arguments of method hnets.mlp_hnet.HMLP.
apply_hyperfan_init().

• method (str) – The type of initialization that should be applied. Possible options are:

– in: Use Chunked Hyperfan-in, i.e., rather the output variances of the hypernetwork
should correspond to fan-in variances.

– out: Use Chunked Hyperfan-out, i.e., rather the output variances of the hypernetwork
should correspond to fan-out variances.

– harmonic: Use the harmonic mean of the fan-in and fan-out variance as target variance
of the hypernetwork output.

78 Chapter 2. Hypernetworks

https://pytorch.org/docs/master/generated/torch.nn.Linear.html#torch.nn.Linear
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

• eps (float) – The minimum variance with which a chunk embedding is initialized.

• cemb_normal_init (bool) – Use normal init for chunk embeddings rather than uniform
init.

• target_vars (list or dict, optional) – The variance of the distribution for each
parameter tensor generated by this hypernetwork. Target variance values can either be
provided as list of length len(hnet.target_shapes) or as dictionary. The usage
is analoguous to the usage of parameter w_val of method hnets.mlp_hnet.HMLP.
apply_hyperfan_init().

Note: This method currently does not allow initial output distributions with non-
zero mean. However, the docstring of method probabilistic.gauss_hnet_init.
gauss_hyperfan_init() describes how this is in principle feasible and might be in-
corporated in the future.

Note: Unspecified target variances for parameter tensors of type 'weight' or 'bias'
are computed as described above. Default target variances for all other parameter tensor
types are simply 1.

property chunk_emb_size

See constructor argument chunk_emb_size.

property cond_chunk_embs

See constructor argument cond_chunk_embs.

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

Returns
See hnets.mlp_hnet.HMLP.distillation_targets().

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters

• (....) – See docstring of method hnets.mlp_hnet.HMLP.forward().

• weights (list or dict, optional) – If provided as dict and chunk embeddings are
considered conditional (see constructor argument cond_chunk_embs), then the additional
key chunk_embs can be used to pass a batch of chunk embeddings. This option is mutually
exclusive with the option of passing cond_id. Note, if conditional inputs via cond_input
are expected, then the batch sizes must agree.

A batch of chunk embeddings is expected to be tensor of shape [B, num_chunks,
chunk_emb_size], where B denotes the batch size.

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

2.3. Chunked MLP - Hypernetwork 79

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

get_chunk_emb(chunk_id=None, cond_id=None)
Get the chunk_id-th chunk embedding.

Parameters

• chunk_id (int, optional) – A number between 0 and num_chunks - 1. If not speci-
fied, a full chunk matrix with shape [num_chunks, chunk_emb_size] is returned. Oth-
erwise, the chunk_id-th row is returned.

• cond_id (int) – Is mandatory if constructor argument cond_chunk_embs was set. De-
termines the set of chunk embeddings to be considered.

Returns
(torch.nn.Parameter)

get_cond_in_emb(cond_id)
Get the cond_id-th (conditional) input embedding.

Parameters
(....) – See docstring of method hnets.mlp_hnet.HMLP.get_cond_in_emb().

Returns
(torch.nn.Parameter)

property num_chunks

The number of chunks that make up the final hypernet output.

This also corresponds to the number of chunk embeddings required per forward sweep.

Type
int

training: bool

2.4 Deconvolutional Hypernetwork with Self-Attention Layers

The module hnets.deconv_hnet implements a hypernetwork that uses transpose convolutions (like the generator of
a GAN) to generate weights. Though, as convolutions usually suffer from only capturing local correlations sufficiently,
we incorporate the self-attention mechanism developed by

Zhang et al., Self-Attention Generative Adversarial Networks, 2018.

See utils.self_attention_layer.SelfAttnLayerV2 for details on this layer type.

The purpose of this network can be seen as the convolutional analogue of the fully-connected hnets.mlp_hnet.HMLP.
Hence, it produces all weights in one go; and does not utilize chunking to obtain better weight compression ratios (a
chunked version can be found in module hnets.chunked_deconv_hnet).

class hypnettorch.hnets.deconv_hnet.HDeconv(target_shapes, hyper_img_shape, uncond_in_size=0,
cond_in_size=8, num_layers=5, num_filters=None,
kernel_size=5, sa_units=(1, 3), verbose=True,
activation_fn=ReLU(), use_bias=True,
no_uncond_weights=False, no_cond_weights=False,
num_cond_embs=1, use_spectral_norm=False,
use_batch_norm=False)

Bases: Module, HyperNetInterface

Implementation of a deconvolutional full hypernet.

80 Chapter 2. Hypernetworks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1805.08318
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

This is a convolutional network, employing transpose convolutions. The network structure is inspired by the DC-
GAN generator structure, though, we are additionally using self-attention layers to model global dependencies.

In general, each transpose convolutional layer will roughly double its input size. Though, we set the hard con-
straint that if the input size of a transpose convolutional layer would be smaller 4, then it doesn’t change the
size.

The network allows to maintain a set of embeddings internally that can be used as conditional input (cmp. hnets.
mlp_hnet.HMLP).

Parameters

• (....) – See constructor arguments of class hnets.mlp_hnet.HMLP.

• hyper_img_shape (tuple) – Since the network has a (de-)convolutional output layer, the
output will be in an image-like shape. Therefore, it won’t be possible to precisely produce the
number of weights prescribed by target_shapes. Therefore, the hyper-image size defined
via this option has to be chosen big enough, i.e., the number of pixels must be greater equal
than the number of weights to be produced. Remaining pixels will be discarded.

This option has to be a tuple (width, height), denoting the internal output shape of the
the hypernet. The number of output channels is assumed to be 1, except if specified otherwise
via (width, height, channels).

• num_layers (int) – The number of transpose convolutional layers including the initial
fully-connected layer.

• num_filters (list, optional) – List of integers of length num_layers-1. The number
of output channels in each hidden transpose conv. layer. By default, the number of filters in
the last hidden layer will be 128 and doubled in every prior layer.

Note: The output of the first layer (which is fully-connected) is here considered to be in the
shape of an image tensor.

• kernel_size (int, tuple or list, optional) – A single number, a tuple (k_x,
k_y) or a list of scalars/tuples of length num_layers-1. Specifying the kernel size in each
convolutional layer.

• sa_units (tuple or list) – List of integers, each representing the index of a layer in this
network after which a self-attention unit should be inserted. For instance, index 0 represents
the fully-connected layer. The last layer may not be chosen.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

2.4. Deconvolutional Hypernetwork with Self-Attention Layers 81

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Parameters
(....) – See docstring of method hnets.mlp_hnet.HMLP.forward().

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

get_cond_in_emb(cond_id)
Get the cond_id-th (conditional) input embedding.

Parameters
cond_id (int) – Determines which input embedding should be returned (the ID has to be
between 0 and num_cond_embs-1, where num_cond_embs denotes the corresponding con-
structor argument).

Returns
(torch.nn.Parameter)

training: bool

2.5 Hypernetwork-container that wraps a mixture of hypernets

The module hnets.hnet_container contains a hypernetwork container, i.e., a hypernetwork that produces
weights by internally using a mixture of hypernetworks that implement the interface hnets.hnet_interface.
HyperNetInterface. The container also allows the specification of shared or condition-specific weights.

Example

Assume a target network with shapes target_shapes=[[10, 5], [5], [5], [5], [5, 5]], where the first 4
tensors represent the weight matrix, bias vector and batch norm scale and shift, while the last tensor is the linear output
layer’s weight matrix.

We consider two usecase scenarios. In the first one, the first layer weights (matrix and bias vector) are generated by a
hypernetwork, while the batch norm weights should be realized via a fixed set of shared weights. The output weights
shall be condition-specific:

from hnets import HMLP

First-layer weights.
fl_hnet = HMLP([[10, 5], [5]], num_cond_embs=5)

def assembly_fct(list_of_hnet_tensors, uncond_tensors, cond_tensors):
assert len(list_of_hnet_tensors) == 1
return list_of_hnet_tensors[0] + uncond_tensors + cond_tensors

hnet = HContainer([[10, 5], [5], [5], [5], [5, 5]], assembly_fct,
hnets=[fl_hnet], uncond_param_shapes=[[5], [5]],
cond_param_shapes=[[5, 5]],
uncond_param_names=['bn_scale', 'bn_shift'],
cond_param_names=['weight'], num_cond_embs=5)

In the second usecase scenario, we utilize two separate hypernetworks, one as above and a second one for the condition-
specific output weights. Batchnorm weights remain to be realized via a single set of shared weights.

82 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

from hnets import HMLP

First-layer weights.
fl_hnet = HMLP([[10, 5], [5]], num_cond_embs=5)
Last-layer weights.
ll_hnet = HMLP([[5, 5]], num_cond_embs=5)

def assembly_fct(list_of_hnet_tensors, uncond_tensors, cond_tensors):
assert len(list_of_hnet_tensors) == 2
return list_of_hnet_tensors[0] + uncond_tensors + \

list_of_hnet_tensors[1]

hnet = HContainer([[10, 5], [5], [5], [5], [5, 5]], assembly_fct,
hnets=[fl_hnet, ll_hnet],
uncond_param_shapes=[[5], [5]],
uncond_param_names=['bn_scale', 'bn_shift'],
num_cond_embs=5)

class hypnettorch.hnets.hnet_container.HContainer(target_shapes, assembly_fct, hnets=None,
uncond_param_shapes=None,
cond_param_shapes=None,
uncond_param_names=None,
cond_param_names=None, verbose=True,
no_uncond_weights=False,
no_cond_weights=False, num_cond_embs=1)

Bases: Module, HyperNetInterface

Implementation of a wrapper that abstracts the use of a set of hypernetworks.

Note: Parameter tensors instantiated by this constructor are initialized via a normal distribution 𝒩 (0, 0.02).

Parameters

• (....) – See constructor arguments of class hnets.mlp_hnet.HMLP.

• assembly_fct (func) – A function handle that takes the produced tensors of each internal
hypernet (see arguments hnets, uncond_param_shapes and cond_param_shapes) and
converts them into tensors with shapes target_shapes.

The function handle must have the signature: assembly_fct(list_of_hnet_tensors,
uncond_tensors, cond_tensors) . The first argument is a list of lists of tensors,
the reamining two are lists of tensors. hnet_tensors contains the output of each hy-
pernetwork in hnets. uncond_tensors contains all internally maintained unconditional
weights as specified by uncond_param_shapes. cond_tensors contains the internally
maintained weights corresponding to the selected condition and as specified by argument
cond_param_shapes. The function is expected to return a list of tensors, each of them
having a shape as specified by target_shapes.

2.5. Hypernetwork-container that wraps a mixture of hypernets 83

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

Example

Assume target_shapes=[[3], [3], [10, 5], [5]] and that hnets is made up
of two hypernetworks with output shapes [[3]] and [[3], [10, 5]]. In addition
cond_param_shapes=[[5]]. Then the argument hnet_tensors will be a list of lists of
tensors as follows: [[tensor(3)], [tensor(3), tensor(10, 5)], uncond_tensors
will be an empty list and cond_tensors will be list of tensors: [[tensor(5)]].

The output of assembly_fct is expected to be a list of tensors as follows: [tensor(3),
tensor(3), tensor(10, 5), tensor(5)].

Note: This function considers one sample at a time, even if a batch of inputs is processed.

Note: It is assumed that assembly_fct does not further process the incoming weights.
Otherwise, the attributes mnets.mnet_interface.MainNetInterface.has_fc_out
and mnets.mnet_interface.MainNetInterface.has_linear_out might be invalid.

• hnets (list, optional) – List of instances of class hnets.hnet_interface.
HyperNetInterface. All these hypernetworks are assumed to produce a part of the weights
that are then assembled to a common hypernetwork output via the assembly_fct.

• uncond_param_shapes (list, optional) – List of lists of integers. Each entry in the
list encodes the shape of an (unconditional) parameter tensor that will be added to attribute
hnets.hnet_interface.HyperNetInterface.unconditional_params and addition-
ally will also become an output of this hypernetwork that is passed to the assembly_fct.

Hence, these parameters are independent of the hypernetwork input. Thus, they are just
treated as normal weights as if they were part of the main network. This option therefore
only provides the convinience of mimicking the behavior weights would elicit if they were
part of the main network without needing to change the main network its implementation.

• cond_param_shapes (list, optional) – List of lists of integers. Each entry in the list
encodes the shape of a (conditional) parameter tensor that will be added to attribute hnets.
hnet_interface.HyperNetInterface.conditional_params (how often it will be
added is determined by argument num_cond_embs). It is otherwise similar to option
uncond_param_shapes.

Note: If this option is specified, then argument cond_id of forward() has to be specified.

• uncond_param_names (list, optional) – If provided, it must have the same length as
uncond_param_shapes. It will contain a list of strings that are used as values for key name
in attribute hnets.hnet_interface.HyperNetInterface.param_shapes_meta.

If not provided, shapes with more than 1 element are assigned value weights and all others
are assigned value bias.

• cond_param_names (list, optional) – Same as argument uncond_param_names for
argument cond_param_shapes.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

distillation_targets()

Targets to be distilled after training.

84 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters

• (....) – See docstring of method hnets.mlp_hnet.HMLP.forward(). Some further
information is provided below.

• uncond_input (optional) – Passed to underlying hypernetworks (see constructor argu-
ment hnets).

• cond_input (optional) – Passed to underlying hypernetworks (see constructor argument
hnets).

• cond_id (int or list, optional) – Only passed to underlying hypernetworks (see
constructor argument hnets) if cond_input is None.

• weights (list or dict, optional) – If provided as dict then an additional key
hnets can be specified, which has to a list of the same length as the constructor argu-
ment hnets containing dictionaries as entries that will be concatenated to the extracted
(hnet-specific) keys uncond_weights and cond_weights.

For instance, for an instance of class hnets.chunked_mlp_hnet.ChunkedHMLP the ad-
ditional key chunk_embs might be added.

• condition (optional) – Will be passed to the underlying hypernetworks (see constructor
argument hnets).

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

property internal_hnets

The list of internal hypernetworks provided via constructor argument hnets.

If hnets was not provided, the attribute is an empty list.

Type
list

training: bool

2.5. Hypernetwork-container that wraps a mixture of hypernets 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

2.6 Helper functions for hypernetworks

The module hnets.hnet_helpers contains utilities that should simplify working with hypernetworks that implement
the interface hnets.hnet_interface.HyperNetInterface. Those helper functions are meant to handle common
manipulations (such as embedding initialization) in an abstract way that hides implementation details to the user.

hypnettorch.hnets.hnet_helpers.get_conditional_parameters(hnet, cond_id)
Get condition specific parameters from the hypernetwork.

Example

Class hnets.mlp_hnet.HMLP may only have one embedding (the conditional input embedding) per condition
as conditional parameter. Thus, this function will simply return [hnet.get_cond_in_emb(cond_id)].

Parameters

• hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork whose con-
ditional parameters regarding cond_id should be extraced.

• cond_id (int) – The condition (or its conditional ID) for which parameters should be ex-
traced.

Returns

A list of tensors, a subset of attribute
hnets.hnet_interface.HyperNetInterface.conditional_params, that are specific
to the condition cond_id. An empty list is returned if conditional parameters are not main-
tained internally.

Return type
(list)

hypnettorch.hnets.hnet_helpers.init_chunk_embeddings(hnet, normal_mean=0.0, normal_std=1.0,
init_fct=None)

Initialize chunk embeddings.

This function only applies to hypernetworks that make use of chunking, such as hnets.chunked_mlp_hnet.
ChunkedHMLP. All other hypernetwork types will be unaffected by this function.

This function handles the initialization of embeddings very similar to function
init_conditional_embeddings(), except that the function handle init_fct has a slightly different
signature. It receives two positional arguments, the chunk embedding and the chunk embedding ID as well as
one optional argument cond_id, the conditional ID (in case of conditional chunk embeddings).

init_fct = lambda cemb, cid, cond_id=None : nn.init.constant_(cemb, 0)

Note: Class hnets.structured_mlp_hnet.StructuredHMLP has multiple sets of chunk tensors as specified
by attribute hnets.structured_mlp_hnet.StructuredHMLP.chunk_emb_shapes. As a simplifying design
choice, the tensors passed to init_fct will not be single embeddings (i.e., vectors), but tensors of embeddings
according to the shapes in attribute hnets.structured_mlp_hnet.StructuredHMLP.chunk_emb_shapes.

Parameters
(....) – See docstring of function init_conditional_embeddings().

86 Chapter 2. Hypernetworks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

hypnettorch.hnets.hnet_helpers.init_conditional_embeddings(hnet, normal_mean=0.0,
normal_std=1.0, init_fct=None)

Initialize internally maintained conditional input embeddings.

This function initializes conditional embeddings if the hypernetwork has any and they are internally main-
tained. For instance, the conditional embeddings of an HMLP instance are those returned by the method hnets.
mlp_hnet.HMLP.get_cond_in_emb().

By default, those embedding will follow a normal distribution. However, one may pass a custom init function
init_fct that receives the embedding and its corresponding conditional ID as input (as is expected to modify
the embedding in-place):

init_fct(cond_emb, cond_id)

Hypernetworks that don’t make use of internally maintained conditional input embeddings will not be affected
by this function.

Note: Chunk embeddings may also be conditional parameters, but are not considered conditional input embed-
dings here. Conditional chunk embeddings can be initialized using function init_chunk_embeddings().

Parameters

• hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork whose con-
ditional embeddings should be initialized.

• normal_mean (float) – The mean of the normal distribution with which embeddings
should be initialized.

• normal_std (float) – The std of the normal distribution with which embeddings should
be initialized.

• init_fct (func, optional) – A function handle that receives a conditional embed-
ding and its ID as input and initializes the embedding in-place. If provided, arguments
normal_mean and normal_std will be ignored.

2.7 Hypernetwork-wrapper for input-preprocessing and output-
postprocessing

The module hnets.hnet_perturbation_wrapper implements a wrapper for hypernetworks that implement the
interface hnets.hnet_interface.HyperNetInterface. By default, the wrapper is meant for perturbing hypernet-
work outputs, such that an implicit distribution (realized via a hypernetwork) with low-dimensional support can be
inflated to have support in the full weight space.

However, the wrapper allows in general to pass function handles that preprocess inputs and/or postprocess hypernetwork
outputs.

class hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper(hnet,
hnet_uncond_in_size=None,
sigma_noise=0.02,
input_handler=None,
output_handler=None,
verbose=True)

Bases: Module, HyperNetInterface

2.7. Hypernetwork-wrapper for input-preprocessing and output-postprocessing 87

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

Hypernetwork wrapper for output perturbation.

This wrapper is meant as a helper for hypernetworks that represent implicit distributions, i.e., distributions that
transform a simple base distribution 𝑝𝑍(𝑧) into a complex target distributions

𝑤 ∼ 𝑞𝜃(𝑊) ⇔ 𝑤 = ℎ𝜃(𝑧) , 𝑧 ∼ 𝑝𝑍(𝑍)

However, the wrapper is more versatile and can also become handy in a variety of other use cases. Yet, in the
following we concentrate on implicit distributions and their practical challenges. One main challenge is typically
that the density 𝑞𝜃(𝑊) is only defined on a lower-dimensional manifold of the weight space. This is often an
undesirable property (e.g., such implicit distributions are often not amenable for optimization with standard
divergence measures, such as the KL).

A simple way to overcome this issue is to add noise perturbations to the output of the hypernetwork, such that
the perturbations itself origin from a full-support distribution. By default, this hypernetwork wrapper adjusts the
sampling procedure above in the following way

𝑤 ∼ 𝑞𝜃(𝑊) ⇔ 𝑤 = ℎ𝜃(𝑧:𝑛) + 𝜎2
noise𝑧 ≡ ℎ̃𝜃(𝑧) , 𝑧 ∼ 𝑝𝑍(𝑍) (2.1)

where now dim(𝒲) = dim(𝒵), 𝜎noise is a hyperparameter that controls the perturbation strength, and 𝑧:𝑛 are
the 𝑛 first entries of the vector 𝑧.

By default, the unconditional input size of this hypernetwork will be of size hnet.num_outputs (if
input_handler is not provided) and the output size will be of the same size.

Parameters

• hnet (hnets.hnet_interface.HyperNetInterface) – The hypernetwork around which
this wrapper should be wrapped.

• hnet_uncond_in_size (int) – This argument refers to 𝑛 from Eq. (2.1). If
input_handler is provided, this argument will be ignored.

• sigma_noise (float) – The perturbation strength 𝜎noise from Eq. (2.1). If
output_handler is provided, this argument will be ignored.

• input_handler (func, optional) – A function handler to process the inputs to the
hnets.hnet_interface.HyperNetInterface.forward() method of hnet. The func-
tion handler should have the following signature

uncond_input_int, cond_input_int, cond_id_int = input_handler(\
uncond_input=None, cond_input=None, cond_id=None)

The returned values will be passed to internal_hnet.

Example

For instance, to reproduce the behavior depicted in Eq. (2.1) one could provide the following
handler

def input_handler(uncond_input=None, cond_input=None,
cond_id=None):

assert uncond_input is not None
n = 5
return uncond_input[:, :n], cond_input, cond_id

• output_handler (func, optional) – A function handler to postprocess the outputs of
the internal hypernetwork internal_hnet.

A function handler with the following signature is expected.

88 Chapter 2. Hypernetworks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

hnet_out = output_handler(hnet_out_int, uncond_input=None,
cond_input=None, cond_id=None)

where hnet_out_int is the output of the internal hypernetwork internal_hnet and
the remaining arguments are the original arguments passed to method forward().
hnet_out_int will always have the format ret_format='flattened' and is also ex-
pected to return this format.

Example

Deviating from Eq. (2.1), let’s say we want to implement the following sampling behavior

𝑤 ∼ 𝑞𝜃(𝑊) ⇔ 𝑤 = ℎ𝜃(𝑧) + 𝜖𝑤 , 𝑧 ∼ 𝑝𝑍(𝑍) and 𝜖𝑤 ∼ 𝑝noise(𝑊)

In this case the unconditional input uncond_input to the forward() method is expected
to have size dim(𝒵) + dim(𝒲).

def input_handler(uncond_input=None, cond_input=None,
cond_id=None):

assert uncond_input is not None
return uncond_input[:, :dim_z], cond_input, cond_id

def output_handler(hnet_out_int, uncond_input=None,
cond_input=None, cond_id=None):

assert uncond_input is not None
return hnet_out_int + uncond_input[:, dim_z:]

• verbose (bool) – Whether network information should be printed during network creation.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

Returns
Simply returns the distillation_targets of the internal hypernet internal_hnet`.

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters
(....) – See docstring of method hnets.hnet_interface.HyperNetInterface.
forward().

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

property internal_hnet

The underlying hypernetwork that was passed via constructor argument hnet.

2.7. Hypernetwork-wrapper for input-preprocessing and output-postprocessing 89

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Type
hnets.hnet_interface.HyperNetInterface

training: bool

2.8 MLP - Hypernetwork

The module hnets.mlp_hnet contains a fully-connected hypernetwork (also termed full hypernet).

This type of hypernetwork represents one of the most simplistic architectural choices to realize a weight gener-
ator. An embedding input, which may consists of conditional and unconditional parts (for instance, in the case
of task-conditioned hypernetwork the conditional input will be a task embedding) is mapped via a series of fully-
connected layers onto a final hidden representation. Then a linear fully-connected output layer per is used to pro-
duce the target weights, output tensors with shapes specified via the target shapes (see hnets.hnet_interface.
HyperNetInterface.target_shapes).

If no hidden layers are used, then this resembles a simplistic linear hypernetwork, where the input embeddings are
linearly mapped onto target weights.

class hypnettorch.hnets.mlp_hnet.HMLP(target_shapes, uncond_in_size=0, cond_in_size=8, layers=(100,
100), verbose=True, activation_fn=ReLU(), use_bias=True,
no_uncond_weights=False, no_cond_weights=False,
num_cond_embs=1, dropout_rate=-1, use_spectral_norm=False,
use_batch_norm=False)

Bases: Module, HyperNetInterface

Implementation of a full hypernet.

The network will consist of several hidden layers and a final linear output layer that produces all weight
matrices/bias-vectors the network has to produce.

The network allows to maintain a set of embeddings internally that can be used as conditional input.

Parameters

• target_shapes (list) – List of lists of intergers, i.e., a list of tensor shapes. Those will be
the shapes of the output weights produced by the hypernetwork. For each entry in this list, a
separate output layer will be instantiated.

• uncond_in_size (int) – The size of unconditional inputs (for instance, noise).

• cond_in_size (int) – The size of conditional input embeddings.

Note, if no_cond_weights is False, those embeddings will be maintained internally.

• layers (list or tuple) – List of integers denoteing the sizes of each hidden layer. If
empty, no hidden layers will be produced.

• verbose (bool) – Whether network information should be printed during network creation.

• activation_fn (func) – The activation function to be used for hidden activations. For
instance, an instance of class torch.nn.ReLU.

• use_bias (bool) – Whether the fully-connected layers that make up this network should
have bias vectors.

• no_uncond_weights (bool) – If True, unconditional weights are not maintained internally
and instead expected to be produced externally and passed to the forward().

90 Chapter 2. Hypernetworks

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1906.00695
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• no_cond_weights (bool) – If True, conditional embeddings are assumed to be maintained
externally. Otherwise, option num_cond_embs has to be properly set, which will determine
the number of embeddings that are internally maintained.

• num_cond_embs (int) – Number of conditional embeddings to be internally maintained.
Only used if option no_cond_weights is False.

Note: Embeddings will be initialized with a normal distribution using zero mean and unit
variance.

• dropout_rate (float) – If -1, no dropout will be applied. Otherwise a number between
0 and 1 is expected, denoting the dropout rate of hidden layers.

• use_spectral_norm (bool) – Use spectral normalization for training.

• use_batch_norm (bool) – Whether batch normalization should be used. Will be applied
before the activation function in all hidden layers.

Note: Batch norm only makes sense if the hypernetwork is envoked with batch sizes greater
than 1 during training.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

apply_hyperfan_init(method='in', use_xavier=False, uncond_var=1.0, cond_var=1.0, mnet=None,
w_val=None, w_var=None, b_val=None, b_var=None)

Initialize the network using hyperfan init.

Hyperfan initialization was developed in the following paper for this kind of hypernetwork

“Principled Weight Initialization for Hypernetworks” https://openreview.net/forum?id=
H1lma24tPB

The initialization is based on the following idea: When the main network would be initialized using Xavier
or Kaiming init, then variance of activations (fan-in) or gradients (fan-out) would be preserved by using
a proper variance for the initial weight distribution (assuming certain assumptions hold at initialization,
which are different for Xavier and Kaiming).

When using this kind of initializations in the hypernetwork, then the variance of the initial main net weight
distribution would simply equal the variance of the input embeddings (which can lead to exploding activa-
tions, e.g., for fan-in inits).

The above mentioned paper proposes a quick fix for the type of hypernet that resembles the simple MLP hnet
implemented in this class, i.e., which have a separate output head per weight tensor in the main network.

Assuming that input embeddings are initialized with a certain variance (e.g., 1) and we use Xavier or
Kaiming init for the hypernet, then the variance of the last hidden activation will also be 1.

Then, we can modify the variance of the weights of each output head in the hypernet to obtain the same
variance per main net weight tensor that we would typically obtain when applying Xavier or Kaiming to
the main network directly.

Note: If mnet is not provided or the corresponding attribute mnets.mnet_interface.
MainNetInterface.param_shapes_meta is not implemented, then this method assumes that 1D target
tensors (cf. constructor argument target_shapes) represent bias vectors in the main network.

2.8. MLP - Hypernetwork 91

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://openreview.net/forum?id=H1lma24tPB
https://openreview.net/forum?id=H1lma24tPB

hypnettorch, Release 1.0

Note: To compute the hyperfan-out initialization of bias vectors, we need access to the fan-in of the
layer, which we can only compute based on the corresponding weight tensor in the same layer. This is
only possible if mnet is provided. Otherwise, the following heuristic is applied. We assume that the shape
directly preceding a bias shape in the constructor argument target_shapes is the corresponding weight
tensor.

Note: All hypernet inputs are assumed to be zero-mean random variables.

Variance of the hypernet input

In general, the input to the hypernetwork can be a concatenation of multiple embeddings (see description
of arguments uncond_var and cond_var).

Let’s denote the complete hypernetwork input by x ∈ R𝑛, which consists of a conditional embedding
e ∈ R𝑛𝑒 and an unconditional input c ∈ R𝑛𝑐 , i.e.,

x =

[︂
e
c

]︂
We simply define the variance of an input Var(𝑥𝑗) as the weighted average of the individual variances, i.e.,

Var(𝑥𝑗) ≡
𝑛𝑒

𝑛𝑒 + 𝑛𝑐
Var(𝑒) +

𝑛𝑐

𝑛𝑒 + 𝑛𝑐
Var(𝑐)

To see that this is correct, consider a linear layer y = 𝑊x or

𝑦𝑖 =
∑︁
𝑗

𝑤𝑖𝑗𝑥𝑗

=

𝑛𝑒∑︁
𝑗=1

𝑤𝑖𝑗𝑒𝑗 +

𝑛𝑒+𝑛𝑐∑︁
𝑗=𝑛𝑒+1

𝑤𝑖𝑗𝑐𝑗−𝑛𝑒

Hence, we can compute the variance of 𝑦𝑖 as follows (assuming the typical Xavier assumptions):

Var(𝑦) = 𝑛𝑒Var(𝑤)Var(𝑒) + 𝑛𝑐Var(𝑤)Var(𝑐)

=
𝑛𝑒

𝑛𝑒 + 𝑛𝑐
Var(𝑒) +

𝑛𝑐

𝑛𝑒 + 𝑛𝑐
Var(𝑐)

Note, that Xavier would have initialized 𝑊 using Var(𝑤) = 1
𝑛 = 1

𝑛𝑒+𝑛𝑐
.

Parameters

• method (str) – The type of initialization that should be applied. Possible options are:

– 'in': Use Hyperfan-in.

– 'out': Use Hyperfan-out.

– 'harmonic': Use the harmonic mean of the Hyperfan-in and Hyperfan-out init.

• use_xavier (bool) – Whether Kaiming (False) or Xavier (True) init should be used.

• uncond_var (float) – The variance of unconditional embeddings. This value is only
taken into consideration if uncond_in_size > 0 (cf. constructor arguments).

• cond_var (float) – The initial variance of conditional embeddings. This value is only
taken into consideration if cond_in_size > 0 (cf. constructor arguments).

92 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

• mnet (mnets.mnet_interface.MainNetInterface, optional) – If applicable, the
user should provide the main (or target) network, whose weights are generated by this hyper-
network. The mnet instance is used to extract valuable information that improve the initial-
ization result. If provided, it is assumed that target_shapes (cf. constructor arguments)
corresponds either to mnets.mnet_interface.MainNetInterface.param_shapes or
mnets.mnet_interface.MainNetInterface.hyper_shapes_learned.

• w_val (list or dict, optional) – The mean of the distribution with which output
head weight matrices are initialized. Note, each weight tensor prescribed by hnets.
hnet_interface.HyperNetInterface.target_shapes is produced via an indepen-
dent linear output head.

One may either specify a list of numbers having the same length as hnets.
hnet_interface.HyperNetInterface.target_shapes or specify a dictionary
which may have as keys the tensor names occurring in mnets.mnet_interface.
MainNetInterface.param_shapes_meta and the corresponding mean value for the
weight matrices of all output heads producing this type of tensor. If a list is provided,
entries may be None and if a dictionary is provided, not all types of parameter tensors
need to be specified. For tensors, for which no value is specified, the default value will be
used. The default values for tensor types 'weight' and 'bias' are calculated based on
the proposed hyperfan-initialization. For other tensor types the actual hypernet outputs
should be drawn from the following distributions

– 'bn_scale': 𝑤 ∼ 𝛿(𝑤 − 1)

– 'bn_shift': 𝑤 ∼ 𝛿(𝑤)

– 'cm_scale': 𝑤 ∼ 𝛿(𝑤 − 1)

– 'cm_shift': 𝑤 ∼ 𝛿(𝑤)

– 'embedding': 𝑤 ∼ 𝒩 (0, 1)

Which would correspond to the following passed arguments

w_val = {
'bn_scale': 0,
'bn_shift': 0,
'cm_scale': 0,
'cm_shift': 0,
'embedding': 0

}
w_var = {

'bn_scale': 0,
'bn_shift': 0,
'cm_scale': 0,
'cm_shift': 0,
'embedding': 0

}
b_val = {

'bn_scale': 1,
'bn_shift': 0,
'cm_scale': 1,
'cm_shift': 0,
'embedding': 0

}
b_var = {

(continues on next page)

2.8. MLP - Hypernetwork 93

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

hypnettorch, Release 1.0

(continued from previous page)

'bn_scale': 0,
'bn_shift': 0,
'cm_scale': 0,
'cm_shift': 0,
'embedding': 1

}

• w_var (list or dict, optional) – The variance of the distribution with which output
head weight matrices are initialized. Variance values of zero means that weights are set to
a constant defined by w_val. See description of argument w_val for more details.

• b_val (list or dict, optional) – The mean of the distribution with which output
head bias vectors are initialized. See description of argument w_val for more details.

• b_var (list or dict, optional) – The variance of the distribution with which output
head bias vectors are initialized. See description of argument w_val for more details.

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters

• (....) – See docstring of method hnets.hnet_interface.HyperNetInterface.
forward().

• condition (int, optional) – This argument will be passed as argument stats_id to
the method utils.batchnorm_layer.BatchNormLayer.forward() if batch normal-
ization is used.

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

get_cond_in_emb(cond_id)
Get the cond_id-th (conditional) input embedding.

Parameters
cond_id (int) – Determines which input embedding should be returned (the ID has to be
between 0 and num_cond_embs-1, where num_cond_embs denotes the corresponding con-
structor argument).

Returns
(torch.nn.Parameter)

training: bool

94 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

2.9 Example Instantiations of a Structured Chunked MLP - Hypernet-
work

The module hnets.structured_hmlp_examples provides helpers for example instantiations of hnets.
structured_mlp_hnet.StructuredHMLP.

Functions in this module typically take a given main network and produce the constructor arguments chunk_shapes,
num_per_chunk and assembly_fct of class hnets.structured_mlp_hnet.StructuredHMLP.

Note: These examples should be used with care. They are meant as inspiration and might not cover all possible
usecases.

hypnettorch.hnets.
structured_hmlp_examples.
resnet_chunking(net)

Design a structured chunking for a ResNet.

hypnettorch.hnets.
structured_hmlp_examples.wrn_chunking(net)

Design a structured chunking for a Wide-ResNet
(WRN).

hypnettorch.hnets.structured_hmlp_examples.resnet_chunking(net, gcd_chunking=False)
Design a structured chunking for a ResNet.

A resnet as implemented in class mnets.resnet.ResNet consists roughly of 5 parts:

• An input convolutional layer with weight shape [C_1, C_in, 3, 3]

• 3 blocks of 2*n convolutional layers each where the first layer has shape [C_i, C_j, 3, 3] with 𝑖 ∈
{2, 3, 4} and 𝑗 ≡ 𝑖− 1 and the remaining 2*n-1 layers have a weight shape of [C_i, C_i, 3, 3].

• A final fully connected layer of shape [n_classes, n_hidden].

Each layer may additionally have a bias vector and (if batch normalization is used) a scale and shift vector.

For instance, if a resnet with biases and batchnorm is used and the first layer will be produced as one structured
chunk, then the first chunk shape (see return value chunk_shapes) will be: [[C_1, C_in, 3, 3], [C_1],
[C_1], [C_1]].

This function will chunk layer wise (i.e., a chunk always comprises up to 4 elements: weights tensor, bias vector,
batchnorm scale and shift). By default, layers with the same shape are grouped together. Hence, the standard
return value contains 8 chunk shapes (input layer, first layer of each block, remaining layers of each block (which
all have the same shape) and the fully-connected output layer). Therefore, the return value num_per_chunk
would be as follows: [1, 1, 2*n-1, 1, 2*n-1, 1, 2*n-1, 1].

Parameters

• net (mnets.resnet.ResNet) – The network for which the structured chunking should be
devised.

• gcd_chunking (bool) – If True, the layers within the 3 resnet blocks will be produced
by 4 chunks. Therefore, the greatest common divisor (gcd) of the feature sizes C_1, C_2,
C_3, C_4 is computed and the 6 middle chunk_shapes produced by default are replaced
by 4 chunk shapes [[C_gcd, C_i, 3, 3], [C_gcd]] (assuming no batchnorm is used).
Note, the first and last entry of chunk_shapes will remain unchanged by this option.

Hence, len(num_per_chunk) = 6 in this case.

Returns

2.9. Example Instantiations of a Structured Chunked MLP - Hypernetwork 95

https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Tuple containing the following arguments that can be passed to the constructor of class hnets.
structured_mlp_hnet.StructuredHMLP.

• chunk_shapes (list)

• num_per_chunk (list)

• assembly_fct (func)

Return type
(tuple)

hypnettorch.hnets.structured_hmlp_examples.wrn_chunking(net, ignore_bn_weights=True,
ignore_out_weights=True,
gcd_chunking=False)

Design a structured chunking for a Wide-ResNet (WRN).

This function is in principle similar to function resnet_chunking(), but with the goal to provide a chunking
scheme that is identical to the one proposed in (accessed August 18th, 2020):

Sacramento et al., “Economical ensembles with hypernetworks”, 2020 https://arxiv.org/abs/2007.
12927

Therefore, a WRN as implemented in class mnets.wide_resnet.WRN is required. For instance, a WRN-28-10-
B(3,3) can be instantiated as follows, using batchnorm but no biases in all convolutional layers:

wrn = WRN(in_shape=(32, 32, 3), num_classes=10, n=4, k=10,
num_feature_maps=(16, 16, 32, 64), use_bias=False,
use_fc_bias=True, no_weights=False, use_batch_norm=True)

We denote channel sizes by [C_in, C_1, C_2, C_3, C_4], where C_in is the number of input channels and
the remaining C_1, C_2, C_3, C_4 denote the channel size per convolutional group. The widening factor is
denoted by k.

In general, there will be up to 11 layer groups, which will be realized by separate hypernetworks (cmp table S1
in Sacramento et al.):

• 0: Input layer weights. If the network’s convolutional layers have biases and batchnorm lay-
ers while ignore_bn_weights=False, then this hypernet will produce weights of shape [[C_1,
C_in, 3, 3], [C_1], [C_1], [C_1]]. However, without convolutional bias terms and with
ignore_bn_weights=True, the hypernet will only produce weights of shape [[C_1, C_in, 3, 3]].
This specification applies to all layer groups generating convolutional layers.

• 1: This layer group will generate the weights of the first convolutional layer in the first convolutional
group, e.g., [[k*C_2, C_1, 3, 3]]. Let’s define r = max(k*C_2/C_1, C_1/k*C_2). If r=1 or r=2
or gcd_chunking=True, then this group is merged with layer group 2.

• 2: The remaining convolutional layer of the first convolutional group. If r=1, r=2 or gcd_chunking=True,
then all convolutional layers of the first group are generated. However, if biases or batch norm weights have
to be generated, then this form of chunking leads to redundancy. Imagine bias terms are used and that
the first layer in this convolutional group has weights [[160, 16, 3, 3], [160]], while the remaining
layers have shape [[160, 160, 3, 3], [160]]. If that’s the case, the hypernetwork output will be of
shape [[160, 16, 3, 3], [160]], meaning that 10 chunks have to be produced for each except the
first layer. However, this means that per convolutional layer 10 bias vectors are generated, while only one
is needed and therefore the other 9 will go to waste.

• 3: Same as 1 for the first layer in the second convolutional group.

• 4 (labelled as 3 in the paper): Same as 2 for all convolutional layers (potentially excluding the first) in the
second convolutional group.

96 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/2007.12927
https://arxiv.org/abs/2007.12927
https://arxiv.org/pdf/2007.12927.pdf

hypnettorch, Release 1.0

• 5: Same as 1 for the first layer in the third convolutional group.

• 6 (labelled as 4 in the paper): Same as 2 for all convolutional layers (potentially excluding the first) in the
third convolutional group.

• 7 (labelled as 5 in the paper): If existing, this hypernetwork produces the 1x1 convolutional layer realizing
the residual connection connecting the first and second residual block in the first convolutional group.

• 8 (labelled as 6 in the paper): Same as 7 but for the first residual connection in the second convolutional
group.

• 9 (labelled as 7 in the paper): Same as 7 but for the first residual connection in the third convolutional
group.

• 10: This hypernetwork will produce the weights of the fully connected output layer, if
ignore_out_weights=False.

Thus, the WRN weights would maximally be produced by 11 different sub- hypernetworks.

Note: There is currently an implementation mismatch, such that the implementation provided here does not
100% mimic the architecture described in Sacramento et al..

To be specific, given the wrn generated above, the hypernetwork output for layer group 2 will be of shape [160,
160, 3, 3], while the paper expects a vertical chunking with a hypernet output of shape [160, 80, 3, 3].

Parameters

• net (mnets.wide_resnet.WRN) – The network for which the structured chunking should
be devised.

• ignore_bn_weights (bool) – If True, even if the given net has batchnorm weights, they
will be ignored by this function.

• ignore_out_weights (bool) – If True, output weights (layer group 10) will be ignored
by this function.

• gcd_chunking (bool) – If True, layer groups 1, 3 and 5 are ignored. Instead, the greatest
common divisor (gcd) of input and output feature size in a convolutional group is computed
and weight tensors within a convolutional group (i.e., layer groups 2, 4 and 6) are chunked
according to this value. However, note that this will cause the generation of unused bias and
batchnorm weights if existing (cp. description of layer group 2).

Returns

Tuple containing the following arguments that can be passed to the constructor of class hnets.
structured_mlp_hnet.StructuredHMLP.

• chunk_shapes (list)

• num_per_chunk (list)

• assembly_fct (func)

Return type
(tuple)

2.9. Example Instantiations of a Structured Chunked MLP - Hypernetwork 97

https://arxiv.org/pdf/2007.12927.pdf
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

2.10 Structured Chunked MLP - Hypernetwork

The module hnets.structured_mlp_hnet contains a Structured Chunked Hypernetwork, i.e., a hypernetwork that
is aware of the target network architecture and choses a smart way of chunking.

In contrast to the Chunked Hypernetwork hnets.chunked_mlp_hnet.ChunkedHMLP, which just flattens the
target_shapes and splits them into equally sized chunks (ignoring the underlying network structure in terms of
layers or type of weight (bias, kernel, . . .)), the StructuredHMLP aims to preserve this structure when chunking the
target weights.

Example

Assume target_shapes = [[3], [3], [10, 5], [10], [20, 5], [20]].

There are now many ways to split those weights into chunks. In the simplest case, we consider only one chunk and
produce all weights at once with a Full Hypernetwork hnets.mlp_hnet.HMLP.

Another simple scenario would be to realize that all shapes except the first two are different. So, we create a total of
5 internal hypernetworks for those 6 weight tensors, where the first internal hypernetwork would produce weights of
shape [3] upon receiving an external input plus an internal chunk embedding. See below for an example instantiation:

def assembly_fct(list_of_chunks):
assert len(list_of_chunks) == 4
ret = []
for chunk in list_of_chunks:

ret.extend(chunk)
return ret

hnet = StructuredHMLP([[3], [3], [10, 5], [10], [20, 5], [20]],
[[[3]], [[10, 5], [10]], [[20, 5], [20]]], [2, 1, 1], 8,
{'layers': [10,10]}, assembly_fct, cond_chunk_embs=True,
uncond_in_size=0, cond_in_size=0, verbose=True,
no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

A smarter way of chunking would be to realize that the last two shapes are just twice the middle two shapes. Hence, we
could instantiate two internal hypernetworks. The first one would be used to produce tensors of shape [3] and therefore
require 2 chunk embeddings. The second internal hypernetwork would be used to create tensors of shape [10, 5],
[10], requiring 3 chunk embeddings (the last two chunks together make up the last two target tensors of shape [20,
5], [20]).

def assembly_fct(list_of_chunks):
assert len(list_of_chunks) == 5
ret = [*list_of_chunks[0], *list_of_chunks[1], *list_of_chunks[2]]
for t, tensor in enumerate(list_of_chunks[3]):

ret.append(torch.cat([tensor, list_of_chunks[4][t]], dim=0))
return ret

hnet = StructuredHMLP([[3], [3], [10, 5], [10], [20, 5], [20]],
[[[3]], [[10, 5], [10]]], [2, 3], 8,
{'layers': [10,10]}, assembly_fct, cond_chunk_embs=True,
uncond_in_size=0, cond_in_size=0, verbose=True,
no_uncond_weights=False, no_cond_weights=False, num_cond_embs=1)

98 Chapter 2. Hypernetworks

hypnettorch, Release 1.0

Example

This hypernetwork can also be used to realize soft-sharing via templates as proposed in Savarese et al.

Assume a target network with 3 layers of identical weight shapes target_shapes=[s, s, s], where s denotes a
weight shape.

If we want to create these 3 weight tensors via a linear combination of two templates, we could create an instance of
StructuredHMLP as follows:

def assembly_fct(list_of_chunks):
assert len(list_of_chunks) == 3
return [list_of_chunks[0][0], list_of_chunks[1][0],

list_of_chunks[2][0]]

hnet = StructuredHMLP([s, s, s], [[s]], [3], 2,
{'layers': [], 'use_bias': False}, assembly_fct
cond_chunk_embs=True, uncond_in_size=0, cond_in_size=0,
verbose=True, no_uncond_weights=False, no_cond_weights=False,
num_cond_embs=1)

There will be one underlying linear hypernetwork, that expects a 2-dimensional embedding input. The computation of
the linear hypernetwork can be seen as 𝑡𝑖 = 𝑊𝑒𝑖. Where 𝑡𝑖 is a tensor of shape s containing the weights of the 𝑖-th
chunk (with chunk embedding 𝑒𝑖).

The 2 templates are encoded in the hypernetwork weights 𝑊 , whereas the chunk embedding represents the coefficients
of the linear combination.

class hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP(target_shapes, chunk_shapes,
num_per_chunk, chunk_emb_sizes,
hmlp_kwargs, assembly_fct,
cond_chunk_embs=False,
uncond_in_size=0, cond_in_size=8,
verbose=True,
no_uncond_weights=False,
no_cond_weights=False,
num_cond_embs=1)

Bases: Module, HyperNetInterface

Implementation of a structured chunked fully-connected hypernet.

This network builds a series of full hypernetworks internally (hidden from the user). There will be one internal hy-
pernetwork for each element of chunk_shapes. Those internal hypernetworks can produce an arbitrary amount
of chunks (as defined by num_per_chunk). All those chunks are finally assembled by function assembly_fct
to produce tensors according to target_shapes.

Note: It is possible to set uncond_in_size and cond_in_size to zero if cond_chunk_embs is True and
there are no zeroes in argument chunk_emb_sizes.

Parameters

• (....) – See constructor arguments of class hnets.mlp_hnet.HMLP.

• chunk_shapes (list) – List of lists of lists of integers. Each chunk will be produced by its
own internal hypernetwork (instance of class hnets.mlp_hnet.HMLP). Hence, this list can
be seen as a list of target_shapes, passed to the underlying internal hypernets.

2.10. Structured Chunked MLP - Hypernetwork 99

https://arxiv.org/abs/1902.09701
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

• num_per_chunk (list) – List of the same length as chunk_shapes, that determines how
often each of these chunks has to be produced.

• chunk_emb_sizes (list or int) – List with the same length as chunk_shapes or sin-
gle integer that will be expanded to this length. Determines the chunk embedding size per
internal hypernetwork.

Note: Embeddings will be initialized with a normal distribution using zero mean and unit
variance.

Note: If the corresponding entry in num_per_chunk is 1, then an embedding size might be
0, which means there won’t be chunk embeddings for the corresponding internal hypernet-
work.

• hmlp_kwargs (list or dict) – List of dictionaries or a single dictionary that will be
expanded to such a list. Those dictionaries may contain keyword arguments for each instance
of class hnets.mlp_hnet.HMLP that will be generated.

The following keys are not permitted in these dictionaries: - uncond_in_size -
cond_in_size - no_uncond_weights - no_cond_weights - num_cond_embs Those ar-
guments will be determined by the corresponding keyword arguments of this class!

• assembly_fct (func) – A function handle that takes the produced chunks and converts
them into tensors with shapes target_shapes.

The function handle must have the signature: assembly_fct(list_of_chunks). The
argument list_of_chunks is a list of lists of tensors. The function is expected to return a
list of tensors, each of them having a shape as specified by target_shapes.

Example

Assume chunk_shapes=[[[3]], [[10, 5], [5]]] and num_per_chunk=[2, 1].
Then the argument list_of_chunks will be a list of lists of tensors as follows:
[[tensor(3)], [tensor(3)], [tensor(10, 5), tensor(5)]].

If target_shapes=[[3], [3], [10, 5], [5]], then the output of assembly_fct is
expected to be a list of tensors as follows: [tensor(3), tensor(3), tensor(10, 5),
tensor(5)].

Note: This function considers one sample at a time, even if a batch of inputs is processed.

Note: It is assumed that assembly_fct does not further process the incoming weights.
Otherwise, the attributes mnets.mnet_interface.MainNetInterface.has_fc_out
and mnets.mnet_interface.MainNetInterface.has_linear_out might be invalid.

• cond_chunk_embs (bool) – See documentation of class hnets.chunked_mlp_hnet.
ChunkedHMLP

Initializes internal Module state, shared by both nn.Module and ScriptModule.

100 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

property chunk_emb_shapes

List of lists of integers. The list contains the shape of the chunk embeddings required per forward sweep.

Note: Some internal hypernets might not need chunk embeddings if the corresponding entry in
chunk_emb_sizes is zero.

Type
list

property cond_chunk_embs

Whether chunk embeddings are unconditional (False) or conditional (True) parameters. See constructor
argument cond_chunk_embs.

Type
bool

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(uncond_input=None, cond_input=None, cond_id=None, weights=None, distilled_params=None,
condition=None, ret_format='squeezed')

Compute the weights of a target network.

Parameters

• (....) – See docstring of method hnets.mlp_hnet.HMLP.forward().

• weights (list or dict, optional) – If provided as dict and chunk embeddings are
considered conditional (see constructor argument cond_chunk_embs), then the additional
key chunk_embs can be used to pass a batch of chunk embeddings. This option is mutually
exclusive with the option of passing cond_id. Note, if conditional inputs via cond_input
are expected, then the batch sizes must agree.

A batch of chunk embeddings is expected to be a list of tensors of shape [B, *ce_shape],
where B denotes the batch size and ce_shape is a shape from list chunk_emb_shapes.

Returns
See docstring of method hnets.hnet_interface.HyperNetInterface.forward().

Return type
(list or torch.Tensor)

get_chunk_embs(cond_id=None)
Get the chunk embeddings.

Parameters
cond_id (int) – Is mandatory if constructor argument cond_chunk_embs was set. Deter-
mines the set of chunk embeddings to be considered.

Returns
A list of tensors with shapes prescribed by chunk_emb_shapes.

2.10. Structured Chunked MLP - Hypernetwork 101

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Return type
(list)

get_cond_in_emb(cond_id)
Get the cond_id-th (conditional) input embedding.

Parameters
(....) – See docstring of method hnets.mlp_hnet.HMLP.get_cond_in_emb().

Returns
(torch.nn.Parameter)

property internal_hnets

The list of internal hypernetworks (instances of class hnets.mlp_hnet.HMLP) which are created to pro-
duce the individual chunks according to constructor argument chunk_shapes.

Type
list

property num_chunks

The total number of chunks that make up the hypernet output.

This attribute simply corresponds to np.sum(num_per_chunk).

Type
int

training: bool

102 Chapter 2. Hypernetworks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CHAPTER

THREE

HYPERPARAMETER SEARCHES

Contents

• Hyperparameter Searches

– A general framework to perform hyperparameter searches on single- and multi-GPU systems

∗ How to run a hyperparameter search

· Execute on a single- or multi-GPU system without job scheduling

· Execute on a cluster with IBM Platform LSF

· Execute on a cluster with Slurm Workload Manager

· Execute on a cluster with unsupported job scheduler

∗ Postprocessing

∗ How to use this framework with your simulation

· Gather random seeds for a given experiment

· Hyperparameter Search Configuration File

· Hyperparameter Search - Postprocessing

· Hyperparameter Search Script

3.1 A general framework to perform hyperparameter searches on
single- and multi-GPU systems

Note, we currently only support simple grid searches.

103

hypnettorch, Release 1.0

3.1.1 How to run a hyperparameter search

The main script in this package is hypnettorch.hpsearch.hpsearch .

$ python -m hypnettorch.hpsearch.hpsearch --help

Though, before being able to run a hyperparameter search, the search grid has to be configured. Therefore, your simu-
lation has its own implementation of the configuration file hypnettorch.hpsearch.hpsearch_config_template.
Please refer to the corresponding documentation to obtain information on how to configure a hyperparameter search.

Execute on a single- or multi-GPU system without job scheduling

The simplest way of execution is to run all hyperparameter configurations sequentially in the foreground. For instance,
on a computer without GPUs, you could start the hpsearch on the CPU as follows

$ python -m hypnettorch.hpsearch.hpsearch --visible_gpus=-1

Though, assuming that your simulations automatically run on a visible GPU, you can also apply this sequential fore-
ground execution to a GPU of your choice (e.g., GPU 2):

$ CUDA_VISIBLE_DEVICES=2 python -m hypnettorch.hpsearch.hpsearch --visible_gpus=-1

Alternatively, the hpsearch may assign GPU ressources to jobs. In this case, multiple hyperparameter configurations
may run in parallel (on multiple GPUs as well as multiple runs per GPU). For this operation mode, you are required to
install the package GPUtil.

Please carefully study the arguments of the hpsearch.

$ python -m hypnettorch.hpsearch.hpsearch --help

Assume you may want to run your search on GPUs 0,1,2,7 and that there should be a hard limit of 5 jobs as-
signed to a GPU by the hpsearch (which you decide based on available CPU and RAM ressources). Note, option
--max_num_jobs_per_gpu currently does not account for other processes that may be running on the GPU which are
not assigned by this hpsearch. In addition, a run may only be assigned to a GPU if at maximum 75% of its memory
is in use and its compute utilization is maximally at 60%. Since runs take some time to properly startup and allocate
GPU ressources, you additionally specify argument --sim_startup_time. Every time a job is assigned to a GPU,
this time has to pass before a new job may be assigned (such that the first job had time to acquire GPU memory and
compute ressources)

$ python -m hypnettorch.hpsearch.hpsearch --visible_gpus=0,1,2,7 --max_num_jobs_per_
→˓gpu=5 --allowed_memory=0.75 --allowed_load=0.6 --sim_startup_time=30

Execute on a cluster with IBM Platform LSF

You may also run the hpsearch on a cluster that uses the IBM Platform LSF job scheduler. In this case, you have to install
the package bsub. To tell the hpsearch that should schedule jobs via bsub, simply append the options --run_cluster
--scheduler=lsf. Here is an example call:

$ bsub -n 1 -W 120:00 -e hpsearch_mysim.err -o hpsearch_mysim.out -R "rusage[mem=8000]"␣
→˓python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --run_cluster␣
→˓--scheduler=lsf --num_jobs=50 --num_hours=24 --num_searches=1000 --resources="\
→˓"rusage[mem=8000, ngpus_excl_p=1]\""

104 Chapter 3. Hyperparameter Searches

https://github.com/anderskm/gputil
https://pypi.org/project/bsub/

hypnettorch, Release 1.0

In the example above, the hpsearch should run for 120 hours on the cluster, requiring 8GB of RAM during that time.
Individual jobs will run for 24 hours. The hpsearch will maximally explore 1000 hyperparameter configurations. At
most 50 jobs will be scheduled in parallel (new jobs will be scheduled as soon as old ones finished until the hard limit
of 1000 runs is reached). Each job will require 1 GPU and 8GB of RAM.

Execute on a cluster with Slurm Workload Manager

The hpsearch can also be run on a cluster with the SLURM job scheduler via the arguments --run_cluster
--scheduler=slurm. Therefore, simply create a job script my_hpsearch.sh for the hpsearch as follows

#!/bin/bash
#SBATCH --job-name=hpsearch
#SBATCH --output=hpsearch_%j.out
#SBATCH --error=hpsearch_%j.err
#SBATCH --time=24:00:00
#SBATCH --mem=8G
python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --run_cluster --
→˓scheduler=slurm --slurm_mem=8G --slurm_gres=gpu:1 --num_jobs=25 --num_hours=4

The hpsearch can be executed via the command:

$ sbatch my_hpsearch.sh

Execute on a cluster with unsupported job scheduler

Unfortunately, you can only execute the hpsearch on a cluster with unsupported job scheduler in the sequential fore-
ground mode via --visible_gpus=-1. For instance, on a cluster running the SLURM job scheduler (note, SLURM
is supported, see above) you can run the hpsearch in sequential forground mode via a script my_hpsearch.sh:

#!/bin/bash
#SBATCH --job-name=hpsearch
#SBATCH --output=hpsearch_%j.out
#SBATCH --error=hpsearch_%j.err
#SBATCH --time=120:00:00
#SBATCH --mem=8G
#SBATCH --gres gpu:1
python -m hypnettorch.hpsearch.hpsearch --grid_module=my_hpsearch_config --visible_gpus=-
→˓1

Note, in this case, you request the ressources required for your jobs for the hpsearch itself. Now, you could execute the
hpsearch via

3.1. A general framework to perform hyperparameter searches on single- and multi-GPU systems105

hypnettorch, Release 1.0

$ sbatch my_hpsearch.sh

3.1.2 Postprocessing

The post processing script hypnettorch.hpsearch.hpsearch_postprocessing is currently very rudimentary. Its
most important task is to make sure that the results of all completed runs are listed in a CSV file (note, that the hpsearch
might be killed prematurely while some jobs are still running).

Please checkout

$ python3 -m hypnettorch.hpsearch.hpsearch_postprocessing --help

3.1.3 How to use this framework with your simulation

In order to utilize the scripts in this subpackage, you have to create a copy of the template hypnettorch.hpsearch.
hpsearch_config_template and fill the template with content as described inside the module. For instance, see
probabilistic.prob_mnist.hpsearch_config_split_bbb as an example.

Additionally, you need to make sure that your simulation has a command-line option like --out_dir (that specifies the
output directory) and that your simulation writes a performance summary file, that can be used to evaluate simulations.

Gather random seeds for a given experiment

This script can be used to gather random seeds for a given configuration. Thus, it is intended to test the robustness of
this certain configuration.

The configuration can either be provided directly, or the path to a simulation output folder or hyperparameter search
output folder is provided. A simulation output folder is recognized by the file config.pickle which contains the
configuration, i.e., all command-line arguments (cf. function hypnettorch.sim_utils.setup_environment()).
If a hyperparameter search output folder (cf. hypnettorch.hpsearch.hpsearch) is provided, the best run will be
selected.

Example 1: Assume you are in the simulation directory and want to start the random seed gathering from there for a
simulation in folder ./out/example_run. Note, we assume here that the base run in ./out/example_run finished
successfully and can already be used as 1 random seed.

$ python -m hypnettorch.hpsearch.gather_random_seeds --grid_module=my_hpsearch_config --
→˓run_dir=./out/example_run --num_seeds=10 | tee /dev/tty | awk 'END{print}' | xargs␣
→˓bash -c 'echo --grid_module=$0 --grid_config=$1 --force_out_dir --dont_force_new_dir --
→˓out_dir=$2' | xargs python -m hypnettorch.hpsearch.hpsearch

Example 2: Alternatively, the hpsearch can be started directly via the option --start_gathering.

$ python -m hypnettorch.hpsearch.gather_random_seeds --grid_module=my_hpsearch_config --
→˓run_dir=./out/example_run --num_seeds=4 --start_gathering --config_name=example_run_
→˓seed_gathering

Example 3: An example instantiation of this script can be found in module probabilistic.regression.gather_seeds_bbb.

hypnettorch.hpsearch.gather_random_seeds.build_grid_and_conditions(cmd_args, config, seeds_list)
Build the hpconfig for the random seed gathering.

106 Chapter 3. Hyperparameter Searches

https://github.com/chrhenning/posterior_replay_cl/blob/master/probabilistic/prob_mnist/hpsearch_config_split_bbb.py
https://git.io/J9quN

hypnettorch, Release 1.0

Parameters

• cmd_args – CLI arguments of this script.

• config – The config to be translated into a search grid.

• seeds_list (list) – The random seeds to be gathered.

(tuple): Tuple containing:

• grid (dict): The search grid.

• conditions (list): Constraints for the search grid.

hypnettorch.hpsearch.gather_random_seeds.get_best_hpsearch_config(out_dir)
Load the config file from the best run of a hyperparameter search.

This file loads the results of the hyperparameter search, and select the configuration that lead to the best perfor-
mance score.

Parameters
out_dir (str) – The path to the hpsearch result folder.

Returns

Tuple containing:

• config: The config of the best run.

• best_out_dir: The path to the best run.

Return type
(tuple)

hypnettorch.hpsearch.gather_random_seeds.get_hpsearch_call(cmd_args, num_seeds, grid_config,
hpsearch_dir=None)

Generate the command line for the hpsearch.

Parameters

• cmd_args – The command line arguments.

• num_seeds (int) – Number of searches.

• grid_config (str) – Location of search grid.

• hpsearch_dir (str, optional) – Where the hpsearch should write its results to.

Returns
The command line to be executed.

Return type
(str)

hypnettorch.hpsearch.gather_random_seeds.get_single_run_config(out_dir)
Load the config file from a specified experiment.

Parameters
out_dir (str) – The path to the experiment.

Returns
The Namespace object containing argument names and values.

3.1. A general framework to perform hyperparameter searches on single- and multi-GPU systems107

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

hypnettorch.hpsearch.gather_random_seeds.run(grid_module=None, results_dir='./out/random_seeds',
config=None, ignore_kwds=None, forced_params=None,
summary_keys=None, summary_sem=False,
summary_precs=None, hpmod_path=None)

Run the script.

Parameters

• grid_module (str, optional) – Name of the reference module which contains the hy-
perparameter search config that can be modified to gather random seeds.

• results_dir (str, optional) – The path where the hpsearch should store its results.

• config – The Namespace object containing argument names and values. If provided, all
random seeds will be gathered from zero, with no reference run.

• ignore_kwds (list, optional) – A list of keywords in the config file to exclude from
the grid.

• forced_params (dict, optional) – Dict of key-value pairs specifying hyperparameter
values that should be fixed across runs.

• summary_keys (list, optional) – If provided, those mean and std of those summary
keys will be written by function write_seeds_summary(). Otherwise, the performance
key defined in grid_module will be used.

• summary_sem (bool) – Whether SEM or SD should be calculated in function
write_seeds_summary().

• summary_precs (list or int, optional) – The precision with which the summary
statistics according to summary_keys should be listed.

• hpmod_path (str, optional) – If the hpsearch doesn’t reside in the same directory as the
calling script, then we need to know from where to start the hpsearch.

hypnettorch.hpsearch.gather_random_seeds.write_seeds_summary(results_dir, summary_keys,
summary_sem, summary_precs,
ret_seeds=False,
summary_fn=None,
seeds_summary_fn='seeds_summary_text.txt')

Write the MEAN and STD (resp. SEM) while aggregating all seeds to text file.

Parameters

• results_dir (str) – The results directory.

• summary_keys (list) – See argument summary_keys of function run().

• summary_sem (bool) – See argument summary_sem of function run().

• summary_precs (list or int, optional) – See argument summary_precs of func-
tion run().

• summary_fn (str, optional) – If given, this will determine the name of the summary
file within individual runs.

• seeds_summmary_fn (str, optional) – The name to give to the summary file across all
seeds.

• ret_seeds (bool, optional) – If activated, the random seeds of all considered runs are
returned as a list.

108 Chapter 3. Hyperparameter Searches

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Hyperparameter Search Configuration File

hypnettorch.hpsearch.
hpsearch_config_template.conditions

Define exceptions for the grid search.

hypnettorch.hpsearch.
hpsearch_config_template.grid

Parameter grid for grid search.

Note, this is just a template for a hyperparameter configuration and not an actual source file.

A configuration file for our custom hyperparameter search script hypnettorch.hpsearch.hpsearch . To setup a
configuration file for your simulation, simply create a copy of this template and follow the instructions in this file to fill
all defined attributes.

Once the configuration is setup for your simulation, you simply need to modify the fields grid and conditions to
prepare a new grid search.

Note, if you are implementing this template for the first time, you also have to modify the code below the “DO NOT
CHANGE THE CODE BELOW” section. Normal users may not change the code below this heading.

hypnettorch.hpsearch.hpsearch_config_template.conditions = [({'option1': [1]},
{'option2': [-1]})]

Define exceptions for the grid search.

Sometimes, not the whole grid should be searched. For instance, if an SGD optimizer has been chosen, then it
doesn’t make sense to search over multiple beta2 values of an Adam optimizer. Therefore, one can specify special
conditions or exceptions. Note* all conditions that are specified here will be enforced. Thus, they overwrite the
grid options above.

How to specify a condition? A condition is a key value tuple: whereas as the key as well as the value is a
dictionary in the same format as in the grid above. If any configurations matches the values specified in the
“key” dict, the values specified in the “values” dict will be searched instead.

Note, if arguments are commented out above but appear in the conditions, the condition will be ignored.

Also keep in mind, that the hpsearch is not checking for conflicting conditions and they are enforced sequentially.
For instance, assume condition 2 would change commands such that condition 1 would fire again. But condition
1 is never tested again, so these commands would make it into the final hpsearch (unless later conditions modify
them again).

hypnettorch.hpsearch.hpsearch_config_template.grid = {'flag_option': [False, True],
'float_option': [0.5, 1.0], 'string_option': ['"example string"', '"another string"']}

Parameter grid for grid search.

Define a dictionary with parameter names as keys and a list of values for each parameter. For flag arguments,
simply use the values [False, True]. Note, the output directory is set by the hyperparameter search script.
Therefore, it always assumes that the argument –out_dir exists and you should not add out_dir to this grid!

3.1. A general framework to perform hyperparameter searches on single- and multi-GPU systems109

hypnettorch, Release 1.0

Example

grid = {'option1': [10], 'option2': [0.1, 0.5],
'option3': [False, True]}

This dictionary would correspond to the following 4 configurations:

python3 SCRIPT_NAME.py --option1=10 --option2=0.1
python3 SCRIPT_NAME.py --option1=10 --option2=0.5
python3 SCRIPT_NAME.py --option1=10 --option2=0.1 --option3
python3 SCRIPT_NAME.py --option1=10 --option2=0.5 --option3

If fields are commented out (missing), the default value is used. Note, that you can specify special conditions
below.

Hyperparameter Search - Postprocessing

A postprocessing for a hyperparameter search that has been executed via the script hypnettorch.hpsearch.
hpsearch .

Hyperparameter Search Script

A very simple hyperparameter search. The results will be gathered as a CSV file.

Here is an example on how to start an hyperparameter search on a cluster using bsub:

$ bsub -n 1 -W 48:00 -e hpsearch.err -o hpsearch.out \
-R "rusage[mem=8000]" \
python -m hypnettorch.hpsearch.hpsearch --run_cluster --num_jobs=20

For more demanding jobs (e.g., ImageNet), one may request more resources:

$ bsub -n 1 -W 96:00 -e hpsearch.err -o hpsearch.out \
-R "rusage[mem=16000]" \
python -m hypnettorch.hpsearch.hpsearch --run_cluster --num_jobs=20 \
--num_hours=48 --resources="\"rusage[mem=8000, ngpus_excl_p=1]\""

Please fill in the grid parameters in the corresponding config file (see command line argument grid_module).

hypnettorch.hpsearch.hpsearch.hpsearch_cli_arguments(parser, show_num_searches=True,
show_out_dir=True,
dout_dir='./out/hyperparam_search',
show_grid_module=True)

The CLI arguments of the hpsearch.

hypnettorch.hpsearch.hpsearch.run(argv=None, dout_dir='./out/hyperparam_search')
Run the hyperparameter search script.

Parameters

• argv (list, optional) – If provided, it will be treated as a list of command-line argument
that is passed to the parser in place of sys.argv.

• dout_dir (str, optional) – The default value of command-line option --out_dir.

110 Chapter 3. Hyperparameter Searches

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

Returns
The path to the CSV file containing the results of this search.

Return type
(str)

3.1. A general framework to perform hyperparameter searches on single- and multi-GPU systems111

https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

112 Chapter 3. Hyperparameter Searches

CHAPTER

FOUR

MAIN NETWORKS

Contents

• Main Networks

– Bidirectional Recurrent Neural Network

– A bio-plausible convolutional network for CIFAR

– Interface for Classifiers

– LeNet

– Multi-Layer Perceptron

– Main-Network Interface

– ResNet

– ResNet for ImageNet

– SimpleRNN

– Wide-ResNet

– The Convnet used by Zenke et al. for CIFAR-10/100

Note: All main networks should inherit from the abstract class hypnettorch.mnets.mnet_interface.
MainNetInterface to provide a consistent interface for users.

4.1 Bidirectional Recurrent Neural Network

This module implements a bidirectional recurrent neural networt (BiRNN). To realize recurrent layers, it utilizes class
mnets.simple_rnn.SimpleRNN. Hence different kinds of BiRNNs can be realized, such as Elman-type BiRNNs and
BiLSTMs. In particular, this class implements the BiRNN in the following manner. Given an input 𝑥1:𝑇 , the forward
RNN is run to produce hidden states ℎ̂(𝑓)

1:𝑇 and the backward RNN is run to produce states ℎ̂(𝑏)
1:𝑇 .

These hidden states are concatenated to produce the final hidden state which is the output of the recurrent layer(s):
ℎ𝑡 = concat(ℎ̂(𝑓)

𝑡 , ℎ̂
(𝑏)
𝑡).

Those inputs are subsequently processed by an instance of class mnets.mlp.MLP to produce the final network outputs.

113

hypnettorch, Release 1.0

class hypnettorch.mnets.bi_rnn.BiRNN(rnn_args={}, mlp_args=None, preprocess_fct=None,
no_weights=False, verbose=True)

Bases: Module, MainNetInterface

Implementation of a bidirectional RNN.

Note: The output is non-linear if the last layer is recurrent! Otherwise, logits are returned (cmp. attribute
mnets.mnet_interface.MainNetInterface.has_fc_out).

Example

Here is an example instantiation of a BiLSTM with a single bidirectional layer of dimensionality 256, assuming
100 dimensional inputs and 10 dimensional outputs.

net = BiRNN(rnn_args={'n_in': 100, 'rnn_layers': [256],
'use_lstm': True, 'fc_layers_pre': [],
'fc_layers': []},

mlp_args={'n_in': 512, 'n_out': 10,
'hidden_layers': []},

no_weights=False)

Parameters

• rnn_args (dict or list) – A dictionary of arguments for an instance of class mnets.
simple_rnn.SimpleRNN. These arguments will be used to create two instances of this class,
one representing the forward RNN and one the backward RNN.

Note, each of these instances may contain multiple layers, even non-recurrent layers. The
outputs of such an instance are considered the hidden activations ℎ̂(𝑓)

1:𝑇 or ℎ̂(𝑏)
1:𝑇 , respectively.

To realize multiple bidirectional layers (which in itself can be multi-layer RNNs), one may
provide a list of dictionaries. Each entry in such list will be used to generate a single bidi-
rectional layer (i.e., consisting of two instances of class mnets.simple_rnn.SimpleRNN).
Note, the input size of each new layer has to be twice the size of ℎ̂(𝑓)

𝑡 from the previous layer.

• mlp_args (dict, optional) – A dictionary of arguments for class mnets.mlp.MLP. The
input size of such an MLP should be twice the size of ℎ̂(𝑓)

𝑡 . If None, then the output of the
last bidirectional layer is considered the output of the network.

• preprocess_fct (func, optional) – A function handle can be provided, that will pro-
cess inputs x passed to the method forward(). An example usecase could be the translation
or selection of word embeddings.

The function handle must have the signature: preprocess_fct(x, seq_lengths=None).
See the corresponding argument descriptions of method forward().The function is ex-
pected to return the preprocessed x.

• no_weights (bool) – See parameter no_weights of class mnets.mlp.MLP.

• verbose (bool) – See parameter verbose of class mnets.mlp.MLP.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

114 Chapter 4. Main Networks

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

forward(x, weights=None, distilled_params=None, condition=None, seq_lengths=None)
Compute the output 𝑦 of this network given the input 𝑥.

Note: If constructor argument preprocess_fct was set, then all inputs x are first processed by this
function.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• weights (list or dict) – See argument weights of method mnets.mlp.MLP.
forward().

• distilled_params – Will only be passed to the underlying instance of class mnets.mlp.
MLP

• condition (int or dict, optional) – If provided, then this argument will be passed
as argument ckpt_id to the method utils.context_mod_layer.ContextModLayer.
forward().

When providing as dict, see argument condition of method mnets.mlp.MLP.
forward() for more details.

• seq_lengths (numpy.ndarray, optional) – List of sequence lengths. The length of
the list has to match the batch size of inputs x. The entries will correspond to the unpadded
sequence lengths. If this option is provided, then the bidirectional layers will reverse its
input sequences according to the unpadded sequence lengths.

Example

x = [[a,b,0,0], [a,b,c,0]].T. If seq_lengths = [2, 3] if provided, then the re-
verse sequences [[b,a,0,0], [c,b,a,0]].T are fed into the first bidirectional layer
(and similarly for all subsequent bidirectional layers). Otherwise reverse sequences [[0,
0,b,a], [0,c,b,a]].T are used.

Caution: If this option is not provided but padded input sequences are used, the output
of a bidirectional layer will depent on the padding. I.e., different padding lengths will
lead to different results.

Returns

Where the tuple is containing:

• output (torch.Tensor): The output of the network.

• hidden (list): None - not implemented yet.

Return type
(torch.Tensor or tuple)

4.1. Bidirectional Recurrent Neural Network 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

get_cm_weights()

Get internal maintained weights that are associated with context- modulation.

Returns
List of weights from mnets.mnet_interface.MainNetInterface.internal_params
that are belonging to context-mod layers.

Return type
(list)

get_non_cm_weights()

Get internal weights that are not associated with context-modulation.

Returns
List of weights from mnets.mnet_interface.MainNetInterface.internal_params
that are not belonging to context-mod layers.

Return type
(list)

init_hh_weights_orthogonal()

Initialize hidden-to-hidden weights orthogonally.

This method will call method mnets.simple_rnn.SimpleRNN.init_hh_weights_orthogonal() of
all internally maintained instances of class mnets.simple_rnn.SimpleRNN.

property num_rec_layers

See attribute mnets.simple_rnn.SimpleRNN.num_rec_layers. Total number of recurrent layer, where
each bidirectional layer consists of at least two recurrent layers (forward and backward layer).

Type
int

property preprocess_fct

See constructor argument preprocess_fct.

Setter
The setter may only be called before the first call of the forward() method.

Type
func

training: bool

property use_lstm

See attribute mnets.simple_rnn.SimpleRNN.use_lstm.

Type
bool

116 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

4.2 A bio-plausible convolutional network for CIFAR

The module mnets.bio_conv_net implements a simple biologically-plausible network with convolutional and fully-
connected layers. The bio-plausibility arises through the usage of conv-layers without weight sharing, i.e., layers from
class utils.local_conv2d_layer.LocalConv2dLayer. The network specification has been taken from the fol-
lowing paper

Bartunov et al., “Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Ar-
chitectures”, NeurIPS 2018.

in which this kind of network has been termed “locally-connected network”.

In particular, we consider the network architecture specified in table 3 on page 13 for the CIFAR dataset.

hypnettorch.mnets.bio_conv_net.
BioConvNet([...])

Implementation of a locally-connected network for CI-
FAR.

class hypnettorch.mnets.bio_conv_net.BioConvNet(in_shape=(32, 32, 3), num_classes=10,
no_weights=False, init_weights=None,
use_context_mod=False, context_mod_inputs=False,
no_last_layer_context_mod=False,
context_mod_no_weights=False,
context_mod_post_activation=False,
context_mod_gain_offset=False,
context_mod_gain_softplus=False,
context_mod_apply_pixel_wise=False)

Bases: Classifier

Implementation of a locally-connected network for CIFAR.

The network consists of 3 bio-plausible convolutional layers (using class utils.local_conv2d_layer.
LocalConv2dLayer) followed by two fully-connected layers.

Assume conv layers are specified by the tuple (K x K, C, S, P), where K denotes the kernel size, C the number
of channels, S the stride and P the padding. The network is defined as follows

• Bio-conv layer (5 x 5, 64, 2, 0)

• Bio-conv layer (5 x 5, 128, 2, 0)

• Bio-conv layer (3 x 3, 256, 1, 1)

• FC layer with 1024 outputs

• FC layer with 10 outputs

Note, the padding for the first two convolutional layers was not specified in the paper, so we just assumed it to be
zero.

The network output will be linear, so we do not apply the softmax inside the forward() method.

Note, the paper states that tanh was used in all networks as non-linearity. Therefore, we use this non-linearity
too.

Parameters

• in_shape – The shape of an input sample.

4.2. A bio-plausible convolutional network for CIFAR 117

http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures
http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures

hypnettorch, Release 1.0

Note: We assume the Tensorflow format, where the last entry denotes the number of chan-
nels.

• num_classes – The number of output neurons.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.

Note, internal weights (see mnets.mnet_interface.MainNetInterface.weights) will
be affected by this argument only.

• use_context_mod (bool) – Add context-dependent modulation layers utils.
context_mod_layer.ContextModLayer after the linear computation of each layer.

• context_mod_inputs (bool) – Whether context-dependent modulation should also be ap-
plied to network intpus directly. I.e., assume x is the input to the network. Then the first
network operation would be to modify the input via x · g + s using context- dependent gain
and shift parameters.

Note: Argument applies only if use_context_mod is True.

• no_last_layer_context_mod (bool) – If True, context-dependent modulation will not
be applied to the output layer.

Note: Argument applies only if use_context_mod is True.

• context_mod_no_weights (bool) – The weights of the context-mod layers (utils.
context_mod_layer.ContextModLayer) are treated independently of the option
no_weights. This argument can be used to decide whether the context-mod parameters
(gains and shifts) are maintained internally or externally.

Note: Check out argument weights of the forward() method on how to correctly pass
weights to the network that are externally maintained.

• context_mod_post_activation (bool) – Apply context-mod layers after the activation
function (activation_fn) in hidden layer rather than before, which is the default behavior.

Note: This option only applies if use_context_mod is True.

Note: This option does not affect argument context_mod_inputs.

Note: Note, there is no non-linearity applied to the output layer, such that this argument has

118 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

no effect there.

• context_mod_gain_offset (bool) – Activates option apply_gain_offset of class
utils.context_mod_layer.ContextModLayer for all context-mod layers that will be
instantiated.

• context_mod_gain_softplus (bool) – Activates option apply_gain_softplus of
class utils.context_mod_layer.ContextModLayer for all context-mod layers that will
be instantiated.

• context_mod_apply_pixel_wise (bool) – If False, the context-dependent modulation
applies a scalar gain and shift to all feature maps in the output of a convolutional layer. When
activating this option, the gain and shift will be a per-pixel parameter in all feature maps.

To be more precise, consider the output of a convolutional layer of shape [C,H,W]. If False,
there will be C gain and shift parameters for such a layer. Upon activating this option, the
number of gain and shift parameters for such a layer will increase to C x H x W.

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(x, weights=None, distilled_params=None, condition=None, collect_activations=False)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• x – Input image.

Note: We assume the Tensorflow format, where the last entry denotes the number of
channels.

• weights (list or dict) – If a list of parameter tensors is given and context modulation
is used (see argument use_context_mod in constructor), then these parameters are inter-
preted as context- modulation parameters if the length of weights equals 2*len(net.
context_mod_layers). Otherwise, the length is expected to be equal to the length of the
attribute mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible keywords internal_weights
and mod_weights. Each keyword is expected to map onto a list of tensors. The keyword
internal_weights refers to all weights of this network except for the weights of the

4.2. A bio-plausible convolutional network for CIFAR 119

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

hypnettorch, Release 1.0

context-modulation layers. The keyword mod_weights, on the other hand, refers specif-
ically to the weights of the context-modulation layers. It is not necessary to specify both
keywords.

• condition (int, optional) – Will be passed as argument ckpt_id to the method
utils.context_mod_layer.ContextModLayer.forward() for all context-mod lay-
ers in this network.

• collect_activations (bool, optional) – If one wants to return the activations in the
network. This information can be used for credit assignment later on, in case an alternative
to PyTorch its torch.autograd should be used.

Returns

Tuple containing:

• y: The output of the network.

• layer_activation (optional): The activations of the network. Only returned if
collect_activations was set to True. The list will contain the activations of all con-
volutional and linear layers.

Return type
(torch.Tensor or tuple)

training: bool

4.3 Interface for Classifiers

A general interface for main networks used in classification tasks. This abstract base class also provides a collection of
static helper functions that are useful in classification problems.

class hypnettorch.mnets.classifier_interface.Classifier(num_classes, verbose)
Bases: Module, MainNetInterface

A general interface for classification networks.

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

static accuracy(y, t)
Computing the accuracy between predictions y and targets t. We assume that the argmax of t results in
labels as described in the docstring of method “cross_entropy_loss”.

Parameters

• y – Outputs from the main network.

• t – Targets in form of soft labels or 1-hot encodings.

Returns
Relative prediction accuracy on the given batch.

120 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/torch.html#module-torch.autograd
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

static knowledge_distillation_loss(logits, target_logits, target_mapping=None, device=None,
T=2.0)

Compute the knowledge distillation loss as proposed by

Hinton et al., “Distilling the Knowledge in a Neural Network”, NIPS Deep Learning and Repre-
sentation Learning Workshop, 2015. http://arxiv.org/abs/1503.02531

Parameters

• logits – Unscaled outputs from the main network, i.e., activations of the last hidden layer
(unscaled logits).

• target_logits – Target logits, i.e., activations of the last hidden layer (unscaled logits)
from the target model. Note, we won’t detach “target_logits” from the graph. Make sure,
that you do this before calling this method.

• target_mapping – In continual learning, it might be that the output layer size of a model
is growing. Thus, it could be that the model providing the target_logits has a smaller
output size than the current model providing the logits. Therefore, one has to provide
a mapping, which is a list of indices for logits that state which activations in logits
have a corresponding target in target_logits. For instance, if the output layer size just
increased by 1 through appending a new output neuron to the current model, the mapping
would simply be: target_mapping = list(range(target_logits.shape[1])).

• device – Current PyTorch device. Only needs to be specified if “target_mapping” is given.

• T – Softmax temperature.

Returns
Knowledge Distillation (KD) loss.

static logit_cross_entropy_loss(h, t, reduction='mean')
Compute cross-entropy loss for given predictions and targets. Note, we assume that the argmax of the target
vectors results in the correct label.

Parameters

• h – Unscaled outputs from the main network, i.e., activations of the last hidden layer (un-
scaled logits).

• t – Targets in form os soft labels or 1-hot encodings.

• reduction (str) – The reduction method to be passed to torch.nn.functional.
cross_entropy().

Returns
Cross-entropy loss computed on logits h and labels extracted from target vector t.

property num_classes

Number of output neurons.

Type
int

static num_hyper_weights(dims)
The number of weights that have to be predicted by a hypernetwork.

Deprecated since version 1.0: Please use method mnets.mnet_interface.MainNetInterface.
shapes_to_num_weights() instead.

4.3. Interface for Classifiers 121

http://arxiv.org/abs/1503.02531
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy
https://pytorch.org/docs/master/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Parameters
dims – For instance, the attribute hyper_shapes.

Returns
(int)

static softmax_and_cross_entropy(h, t, reduction_sum=False)
Compute the cross entropy from logits, allowing smoothed labels (i.e., this function does not require 1-hot
targets).

Parameters

• h – Unscaled outputs from the main network, i.e., activations of the last hidden layer (un-
scaled logits).

• t – Targets in form os soft labels or 1-hot encodings.

Returns
Cross-entropy loss computed on logits h and given targets t.

training: bool

4.4 LeNet

This module contains a general classifier template and a LeNet-like network to classify either MNIST or CIFAR-10
images. The network is implemented in a way that it might not have trainable parameters. Instead, the network weights
would have to be passed to the forward method. This makes the usage of a hypernetwork (a network that generates
the weights of another network) particularly easy.

class hypnettorch.mnets.lenet.LeNet(in_shape=(28, 28, 1), num_classes=10, verbose=True,
arch='mnist_large', no_weights=False, init_weights=None,
dropout_rate=-1, **kwargs)

Bases: Classifier

The network consists of two convolutional layers followed by two fully- connected layers. See implementation
for details.

LeNet was originally introduced in

“Gradient-based learning applied to document recognition”, LeCun et al., 1998.

Though, the implementation provided here has several difference compared to the original LeNet architecture
(e.g., the LeNet-5 architecture):

• There is no special connectivity map before the second convolutional layer as described by table 1 in the
original paper.

• The dimensions of layers and their activation functions are dfferent.

• The original LeNet-5 has a third fully connected layer with 1x1 kernels.

We mainly use this modified LeNet architecture for MNIST:

• A small architecture with only 21,840 weights.

• A larger architecture with 431,080 weights.

Both of these architectures are typically used for MNIST nowadays.

Note, a variant of this architecture is also used for CIFAR-10, e.g. in

122 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

“Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference”, Gal
et al., 2015.

and

“Multiplicative Normalizing Flows for Variational Bayesian Neural Networks”, Louizos et al., 2017.

In both these works, the dimensions of the weight parameters are:

main_dims=[[192,3,5,5],[192],[192,192,5,5],[192],[1000,4800],
[1000],[10,1000],[10]],

which is an architecture with 5,747,394 weights. Note, the authors used dropout in different configurations, e.g.,
after each layer, only after the fully-connected layer or no dropout at all.

Parameters

• in_shape (tuple or list) – The shape of an input sample.

Note: We assume the Tensorflow format, where the last entry denotes the number of chan-
nels.

• num_classes (int) – The number of output neurons.

• verbose (bool) – Allow printing of general information about the generated network (such
as number of weights).

• arch (str) – The architecture to be employed. The following options are available:

– 'mnist_small': A small LeNet with 21,840 weights suitable for MNIST

– 'mnist_large': A larger LeNet with 431,080 weights suitable for MNIST

– 'cifar': A huge LeNet with 5,747,394 weights designed for CIFAR-10.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.

• dropout_rate (float) – If -1, no dropout will be applied. Otherwise a number between
0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the convolutional layers (before pooling) and after the first
fully-connected layer (after the activation function).

• **kwargs – Keyword arguments regarding context modulation. This class can process the
same context-modulation related arguments as class mnets.mlp.MLP. One may addition-
ally specify the argument context_mod_apply_pixel_wise (see class mnets.resnet.
ResNet).

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

4.4. LeNet 123

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• weights (list or dict) – See argument weights of method mnets.mlp.MLP.
forward().

• condition (int, optional) – If provided, then this argument will be passed as
argument ckpt_id to the method utils.context_mod_layer.ContextModLayer.
forward().

Returns
The output of the network.

Return type
(torch.Tensor)

training: bool

4.5 Multi-Layer Perceptron

Implementation of a fully-connected neural network.

An example usage is as a main model, that doesn’t include any trainable weights. Instead, weights are received as
additional inputs. For instance, using an auxilliary network, a so called hypernetwork, see

Ha et al., “HyperNetworks”, arXiv, 2016, https://arxiv.org/abs/1609.09106

class hypnettorch.mnets.mlp.MLP(n_in=1, n_out=1, hidden_layers=(10, 10), activation_fn=ReLU(),
use_bias=True, no_weights=False, init_weights=None, dropout_rate=-1,
use_spectral_norm=False, use_batch_norm=False, bn_track_stats=True,
distill_bn_stats=False, use_context_mod=False,
context_mod_inputs=False, no_last_layer_context_mod=False,
context_mod_no_weights=False, context_mod_post_activation=False,
context_mod_gain_offset=False, context_mod_gain_softplus=False,
out_fn=None, verbose=True)

Bases: Module, MainNetInterface

Implementation of a Multi-Layer Perceptron (MLP).

This is a simple fully-connected network, that receives input vector x and outputs a vector y of real values.

The output mapping does not include a non-linearity by default, as we wanna map to the whole real line (but see
argument out_fn).

124 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1609.09106
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

Parameters

• n_in (int) – Number of inputs.

• n_out (int) – Number of outputs.

• hidden_layers (list or tuple) – A list of integers, each number denoting the size of a
hidden layer.

• activation_fn – The nonlinearity used in hidden layers. If None, no nonlinearity will be
applied.

• use_bias (bool) – Whether layers may have bias terms.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.

Note, internal weights (see mnets.mnet_interface.MainNetInterface.weights) will
be affected by this argument only.

• dropout_rate – If -1, no dropout will be applied. Otherwise a number between 0 and 1 is
expected, denoting the dropout rate of hidden layers.

• use_spectral_norm – Use spectral normalization for training.

• use_batch_norm (bool) – Whether batch normalization should be used. Will be applied
before the activation function in all hidden layers.

• bn_track_stats (bool) – If batch normalization is used, then this option deter-
mines whether running statistics are tracked in these layers or not (see argument
track_running_stats of class utils.batchnorm_layer.BatchNormLayer).

If False, then batch statistics are utilized even during evaluation. If True, then running stats
are tracked. When using this network in a continual learning scenario with different tasks
then the running statistics are expected to be maintained externally. The argument stats_id
of the method utils.batchnorm_layer.BatchNormLayer.forward() can be provided
using the argument condition of method forward().

Example

To maintain the running stats, one can simply iterate over all batch norm layers and check-
point the current running stats (e.g., after learning a task when applying a Continual learning
scenario).

for bn_layer in net.batchnorm_layers:
bn_layer.checkpoint_stats()

• distill_bn_stats (bool) – If True, then the shapes of the batchnorm statis-
tics will be added to the attribute mnets.mnet_interface.MainNetInterface.
hyper_shapes_distilled and the current statistics will be returned by the method
distillation_targets().

Note, this attribute may only be True if bn_track_stats is True.

• use_context_mod (bool) – Add context-dependent modulation layers utils.
context_mod_layer.ContextModLayer after the linear computation of each layer.

4.5. Multi-Layer Perceptron 125

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• context_mod_inputs (bool) – Whether context-dependent modulation should also be ap-
plied to network intpus directly. I.e., assume x is the input to the network. Then the first
network operation would be to modify the input via x · g + s using context- dependent gain
and shift parameters.

Note: Argument applies only if use_context_mod is True.

• no_last_layer_context_mod (bool) – If True, context-dependent modulation will not
be applied to the output layer.

Note: Argument applies only if use_context_mod is True.

• context_mod_no_weights (bool) – The weights of the context-mod layers (utils.
context_mod_layer.ContextModLayer) are treated independently of the option
no_weights. This argument can be used to decide whether the context-mod parameters
(gains and shifts) are maintained internally or externally.

Note: Check out argument weights of the forward() method on how to correctly pass
weights to the network that are externally maintained.

• context_mod_post_activation (bool) – Apply context-mod layers after the activation
function (activation_fn) in hidden layer rather than before, which is the default behavior.

Note: This option only applies if use_context_mod is True.

Note: This option does not affect argument context_mod_inputs.

Note: This option does not affect argument no_last_layer_context_mod. Hence, if a
output-nonlinearity is applied through argument out_fn, then context-modulation would be
applied before this non-linearity.

• context_mod_gain_offset (bool) – Activates option apply_gain_offset of class
utils.context_mod_layer.ContextModLayer for all context-mod layers that will be
instantiated.

• context_mod_gain_softplus (bool) – Activates option apply_gain_softplus of
class utils.context_mod_layer.ContextModLayer for all context-mod layers that will
be instantiated.

• out_fn (optional) – If provided, this function will be applied to the output neurons of the
network.

Warning: This changes the interpretation of the output of the forward() method.

• verbose (bool) – Whether to print information (e.g., the number of weights) during the
construction of the network.

126 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Initializes internal Module state, shared by both nn.Module and ScriptModule.

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This method will return the current batch statistics of all batch normalization layers if distill_bn_stats
and use_batch_norm was set to True in the constructor.

Returns
The target tensors corresponding to the shapes specified in attribute
hyper_shapes_distilled.

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• weights (list or dict) – If a list of parameter tensors is given and context modulation
is used (see argument use_context_mod in constructor), then these parameters are inter-
preted as context- modulation parameters if the length of weights equals 2*len(net.
context_mod_layers). Otherwise, the length is expected to be equal to the length of the
attribute mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible keywords internal_weights
and mod_weights. Each keyword is expected to map onto a list of tensors. The keyword
internal_weights refers to all weights of this network except for the weights of the
context-modulation layers. The keyword mod_weights, on the other hand, refers specif-
ically to the weights of the context-modulation layers. It is not necessary to specify both
keywords.

• distilled_params – Will be passed as running_mean and running_var arguments
of method utils.batchnorm_layer.BatchNormLayer.forward() if batch normal-
ization is used.

• condition (int or dict, optional) – If int is provided, then this argument
will be passed as argument stats_id to the method utils.batchnorm_layer.
BatchNormLayer.forward() if batch normalization is used.

If a dict is provided instead, the following keywords are allowed:

– bn_stats_id: Will be handled as stats_id of the batchnorm layers as described
above.

– cmod_ckpt_id: Will be passed as argument ckpt_id to the method utils.
context_mod_layer.ContextModLayer.forward().

Returns

Tuple containing:

• y: The output of the network.

• h_y (optional): If out_fn was specified in the constructor, then this value will be returned.
It is the last hidden activation (before the out_fn has been applied).

Return type
(tuple)

4.5. Multi-Layer Perceptron 127

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

training: bool

static weight_shapes(n_in=1, n_out=1, hidden_layers=[10, 10], use_bias=True)
Compute the tensor shapes of all parameters in a fully-connected network.

Parameters

• n_in – Number of inputs.

• n_out – Number of output units.

• hidden_layers – A list of ints, each number denoting the size of a hidden layer.

• use_bias – Whether the FC layers should have biases.

Returns
A list of list of integers, denoting the shapes of the individual parameter tensors.

4.6 Main-Network Interface

The module mnets.mnet_interface contains an interface for main networks. The interface ensures that we can
consistently use these networks without knowing their specific implementation.

class hypnettorch.mnets.mnet_interface.MainNetInterface

Bases: ABC

A general interface for main networks, that can be used stand-alone (i.e., having their own weights) or with no
(or only some) internal weights, such that the remaining weights have to be passed through the forward function
(e.g., they may be generated through a hypernetwork).

property batchnorm_layers

A list of instances of class utils.batchnorm_layer.BatchNormLayer in case batch normalization is
used in this network.

Note: We explicitly do not support the usage of PyTorch its batchnorm layers as class utils.
batchnorm_layer.BatchNormLayer represents a hypernet compatible wrapper for them.

Type
torch.nn.ModuleList

property context_mod_layers

A list of instances of class utils.context_mod_layer.ContextModLayer in case these are used in this
network.

Type
torch.nn.ModuleList

custom_init(normal_init=False, normal_std=0.02, zero_bias=True)
Initialize weight tensors in attribute layer_weight_tensors using Xavier initialization and set bias vec-
tors to 0.

Note: This method will override the default initialization of the network, which is often based on torch.
nn.init.kaiming_uniform_() for weight tensors (i.e., attribute layer_weight_tensors) and a uni-
form init based on fan-in/fan-out for bias vectors (i.e., attribute layer_bias_vectors).

128 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/abc.html#abc.ABC
https://pytorch.org/docs/master/generated/torch.nn.ModuleList.html#torch.nn.ModuleList
https://pytorch.org/docs/master/generated/torch.nn.ModuleList.html#torch.nn.ModuleList
https://pytorch.org/docs/master/nn.init.html#torch.nn.init.kaiming_uniform_
https://pytorch.org/docs/master/nn.init.html#torch.nn.init.kaiming_uniform_

hypnettorch, Release 1.0

Parameters

• normal_init (bool) – Use normal initialization rather than Xavier.

• normal_std (float) – The standard deviation when choosing normal_init.

• zero_bias (bool) – Whether bias vectors should be initialized to zero. If False, then
bias vectors are left untouched.

abstract distillation_targets()

Targets to be distilled after training.

If hyper_shapes_distilled is not None, then this method can be used to retrieve the targets that should
be distilled into an external hypernetwork after training.

The shapes of the returned tensors have to match the shapes specified in hyper_shapes_distilled .

Example

Assume a continual learning scenario with a main network that uses batch normalization (and tracks running
statistics). Then this method should be called right after training on a task in order to retrieve the running
statistics, such that they can be distilled into a hypernetwork.

Returns
The target tensors corresponding to the shapes specified in attribute
hyper_shapes_distilled .

static flatten_params(params, param_shapes=None, unflatten=False)
Flatten a list of parameter tensors.

This function will take a list of parameter tensors and flatten them into a single vector. This flattening
operation can also be undone using the argument unflatten.

Parameters

• params (list) – A list of tensors. Those tensors will be flattened and concatenated into a
tensor. If unflatten=True, then params is expected to be a flattened tensor, which will
be split into a list of tensors according to param_shapes.

• param_shapes (list) – List of parameter tensor shapes. Required when unflattening a
flattened parameter tensor.

• unflatten (bool) – If True. the flattening operation will be reversed.

Returns
The flattened tensor. If unflatten=True, a list of tensors will be returned.

Return type
(torch.Tensor)

abstract forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• x – The inputs 𝑥 to the network.

• weights (optional) – List of weight tensors, that are used as network parameters. If
attribute hyper_shapes_learned is not None, then this argument is non-optional and
the shapes of the weight tensors have to be as specified by hyper_shapes_learned .

4.6. Main-Network Interface 129

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Otherwise, this option might still be set but the weight tensors must follow the shapes
specified by attribute param_shapes.

• distilled_params (optional) – May only be passed if attribute
hyper_shapes_distilled is not None.

If not passed but the network relies on those parameters (e.g., batchnorm running statistics),
then this method simply chooses the current internal representation of these parameters as
returned by distillation_targets().

• condition (optional) – Sometimes, the network will have to be conditioned on contex-
tual information, which can be passed via this argument and depends on the actual imple-
mentation of this interface.

For instance, when using batch normalization in a continual learning scenario, where
running statistics have been checkpointed for every task, then this condition might
be the actual task ID, that is passed as the argument stats_id of the method utils.
batchnorm_layer.BatchNormLayer.forward().

Returns
The output 𝑦 of the network.

get_output_weight_mask(out_inds=None, device=None)
Create a mask for selecting weights connected solely to certain output units.

This method will return a list of the same length as param_shapes. Entries in this list are either None or
masks for the corresponding parameter tensors. For all parameter tensors that are not directly connected
to output units, the corresponding entry will be None. If out_inds is None, then all output weights are
selected by a masking value 1. Otherwise, only the weights connected to the output units in out_inds are
selected, the rest is masked out.

Note: This method only works for networks with a fully-connected output layer (see has_fc_out), that
have the attribute mask_fc_out set. Otherwise, the method has to be overwritten by an implementing
class.

Parameters

• out_inds (list, optional) – List of integers. Each entry denotes an output unit.

• device – Pytorch device. If given, the created masks will be moved onto this device.

Returns
List of masks with the same length as param_shapes. Entries whose corresponding param-
eter tensors are not connected to the network outputs are None.

Return type
(list)

property has_bias

Whether layers in this network have bias terms.

Type
bool

property has_fc_out

Whether the output layer of the network is a fully-connected layer.

Type
bool

130 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

property has_linear_out

Is True if no nonlinearity is applied in the output layer.

Type
bool

property hyper_shapes_distilled

A list of lists of integers. This attribute is complementary to attribute hyper_shapes_learned , which
contains shapes of tensors that are learned through the hypernetwork. In contrast, this attribute should con-
tain the shapes of tensors that are not needed by the main network during training (as it learns or calculates
the tensors itself), but should be distilled into a hypernetwork after training in order to avoid increasing
memory consumption.

The attribute is None if no tensors have to be distilled into a hypernetwork.

For instance, if batch normalization is used, then the attribute hyper_shapes_learned might contain
the batch norm weights whereas the attribute hyper_shapes_distilled contains the running statistics,
which are first estimated by the main network during training and later distilled into the hypernetwork.

Type
list or None

property hyper_shapes_learned

A list of lists of integers. Each list represents the shape of a weight tensor that has to be passed to the
forward() method during training. If all weights are maintained internally, then this attribute will be
None.

Type
list

property hyper_shapes_learned_ref

A list of integers. Each entry either represents an index within attribute param_shapes or is set to -1.

Note: The possibility that entries may be -1 should account for unforeseeable flexibility that programmers
may need.

Type
list

property internal_params

A list of all internally maintained parameters of the main network currently in use. If all parameters are
assumed to be generated externally, then this attribute will be None.

Simply speaking, the parameters listed here should be passed to the optimizer.

Note: In most cases, the attribute will contain the same set of parameter objects as the method torch.
nn.Module.parameters()would return. Though, there might be future use-cases where the programmer
wants to hide parameters from the optimizer in a task- or time-dependent manner.

Type
torch.nn.ParameterList or None

4.6. Main-Network Interface 131

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.parameters
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.parameters
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList

hypnettorch, Release 1.0

property internal_params_ref

A list of integers. Each entry either represents an index within attribute param_shapes or is set to -1.

Can only be spacified if internal_params is not None.

Note: The possibility that entries may be -1 should account for unforeseeable flexibility that programmers
may need.

Type
list or None

property layer_bias_vectors

Similar to attribute layer_weight_tensors but for the bias vectors in each layer. List should be empty
in case has_bias is False.

Note: There might be cases where some weight matrices in attribute layer_weight_tensors have no
bias vectors, in which case elements of this list might be None.

Type
torch.nn.ParameterList

property layer_weight_tensors

These are the actual weight tensors used in layers (e.g., weight matrix in fully-connected layer, kernels in
convolutional layer, . . .).

This attribute is useful when applying a custom initialization to these layers.

Type
torch.nn.ParameterList

property mask_fc_out

If this attribute is set to True, it is implicitly assumed that if hyper_shapes_learned is not None, the
last two entries of hyper_shapes_learned are the weights and biases of the final fully-connected layer.

This attribute is helpful, for instance, in multi-head continual learning settings. In case we regularize task-
specific main network weights, it is important to know which weights are specific for an output head (as
determined by the weights of the final layer).

Note: Only applies if attribute has_fc_out is True.

Type
bool

property num_internal_params

The number of internally maintained parameters as prescribed by attribute internal_params.

Type
int

132 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

property num_params

The total number of weights in the parameter tensors described by the attribute param_shapes.

Type
int

overwrite_internal_params(new_params)
Overwrite the values of all internal parameters.

This will affect all parameters maintained in attribute internal_params.

An example usage of this method is the initialization of a standalone main network with weights that have
been previously produced by a hypernetwork.

Parameters
new_params – A list of parameter values that are used to initialize the network internal pa-
rameters is expected.

property param_shapes

A list of lists of integers. Each list represents the shape of a parameter tensor. Note, this attribute is
independent of the attribute internal_params, it always comprises the shapes of all parameter tensors as
if the network would be stand-alone (i.e., no weights being passed to the forward() method).

Type
list

property param_shapes_meta

A list of dictionaries. The length of the list is equal to the length of the list param_shapes and each entry of
this list provides meta information to the corresponding entry in param_shapes. Each dictionary contains
the keys name, index and layer. The key name is a string and refers to the type of weight tensor that the
shape corresponds to.

Possible values are:

• 'weight': A weight tensor of a standard layer as those stored in attribute layer_weight_tensors.

• 'bias': A bias vector of a standard layer as those stored in attribute layer_bias_vectors.

• 'bn_scale': The weights for scaling activations in a batchnorm layer utils.batchnorm_layer.
BatchNormLayer.

• 'bn_shift': The weights for shifting activations in a batchnorm layer utils.batchnorm_layer.
BatchNormLayer.

• 'cm_scale': The weights for scaling activations in a context-mod layer utils.
context_mod_layer.ContextModLayer.

• 'cm_shift': The weights for shifting activations in a context-mod layer utils.
context_mod_layer.ContextModLayer.

• 'embedding': The parameters represent embeddings.

• None: Not specified!

The key index might refer to the index of the corresponding parameter tensor (if existing) inside the
internal_params list. It is -1 if the parameter tensor is not internally maintained.

The key layer is an integer. Shapes with the same layer entry are supposed to reside in the same layer.
For instance, a 'weight' and a 'bias' with the same entry for key layer are supposed to be the weight
tensor and bias vector in the same layer. The value -1 refers to not specified!

type
list

4.6. Main-Network Interface 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

static shapes_to_num_weights(dims)
The number of parameters contained in a list of tensors with the given shapes.

Parameters
dims – List of tensor shapes. For instance, the attribute hyper_shapes_learned .

Returns
(int)

property weights

Same as internal_params.

Deprecated since version 1.0: Please use attribute internal_params instead.

Type
torch.nn.ParameterList or None

4.7 ResNet

This module implements the class of Resnet networks described in section 4.2 of the following paper:

“Deep Residual Learning for Image Recognition”, He et al., 2015 https://arxiv.org/abs/1512.03385

class hypnettorch.mnets.resnet.ResNet(in_shape=(32, 32, 3), num_classes=10, use_bias=True,
num_feature_maps=(16, 16, 32, 64), verbose=True, n=5, k=1,
no_weights=False, init_weights=None, use_batch_norm=True,
bn_track_stats=True, distill_bn_stats=False,
context_mod_apply_pixel_wise=False, **kwargs)

Bases: Classifier

A resnet with 6𝑛 + 2 layers with 3𝑛 residual blocks, consisting of two layers each.

Parameters

• in_shape (tuple or list) – The shape of an input sample in format HWC.

Note
We assume the Tensorflow format, where the last entry denotes the number of channels.

• num_classes (int) – The number of output neurons.

Note: The network outputs logits.

• use_bias (bool) – Whether layers may have bias terms.

Note: Bias terms are unnecessary in convolutional layers if batch normalization is used.
However, this option disables bias terms altogether (including in the final fully-connected
layer).

• num_feature_maps (tuple) – A list of 4 integers, each denoting the number of feature maps
of convolutional layers in a certain group of the network architecture. The first entry is the
number of feature maps of the first convolutional layer, the remaining 3 numbers determine
the number of feature maps in the consecutive groups comprising 2𝑛 convolutional layers
each.

134 Chapter 4. Main Networks

https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

• verbose (bool) – Allow printing of general information about the generated network (such
as number of weights).

• n (int) – The network will consist of 6𝑛+ 2 layers. In the paper 𝑛 has been chosen to be 3,
5, 7, 9 or 18.

• k (int) – The widening factor. Feature maps in the 3 convolutional groups will be mul-
tiplied by this number. See argument num_feature_maps. This argument is typical for
wide resnets, such as mnets.wide_resnet.WRN. Hence, for k > 1 this network becomes
essentially a wide resnet.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

Note, this also affects the affine parameters of the batchnorm layer. I.e., if set to True, then
the argument affine of utils.batchnorm_layer.BatchNormLayerwill be set to False
and we expect the batchnorm parameters to be passed to the forward().

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.

• use_batch_norm – Whether batch normalization should used. It will be applied after all
convolutional layers (before the activation).

• bn_track_stats – If batch normalization is used, then this option determines whether run-
ning statistics are tracked in these layers or not (see argument track_running_stats of
class utils.batchnorm_layer.BatchNormLayer).

If False, then batch statistics are utilized even during evaluation. If True, then running stats
are tracked. When using this network in a continual learning scenario with different tasks
then the running statistics are expected to be maintained externally. The argument stats_id
of the method utils.batchnorm_layer.BatchNormLayer.forward() can be provided
using the argument condition of method forward().

Example

To maintain the running stats, one can simply iterate over all batch norm layers and check-
point the current running stats (e.g., after learning a task when applying a Continual Learning
scenario).

for bn_layer in net.batchnorm_layers:
bn_layer.checkpoint_stats()

• distill_bn_stats – If True, then the shapes of the batchnorm statistics will be added to
the attribute mnets.mnet_interface.MainNetInterface.hyper_shapes_distilled
and the current statistics will be returned by the method distillation_targets().

Note, this attribute may only be True if bn_track_stats is True.

• context_mod_apply_pixel_wise (bool) – By default, the context-dependent modulation
applies a scalar gain and shift to all feature maps in the output of a convolutional layer. When
activating this option, the gain and shift will be a per-pixel parameter in all feature maps.

To be more precise, consider the output of a convolutional layer of shape [C,H,W]. By de-
fault, there will be C gain and shift parameters for such a layer. Upon activating this option,
the number of gain and shift parameters for such a layer will increase to C x H x W.

4.7. ResNet 135

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• **kwargs – Keyword arguments regarding context modulation. This class can process the
same context-modulation related arguments as class mnets.mlp.MLP. Additionally, one may
specify the argument context_mod_apply_pixel_wise.

Some additional remarks regarding the handling of keyword arguments:

– use_context_mod: Context-modulation will be applied after the linear computation of
each layer (i.e. all hidden layers (conv layers) as well as the final FC output layer).

Similar to Spatial Batch-Normalization, there will be a scalar shift and gain applied per
feature map for all convolutional layers (except if context_mod_apply_pixel_wise is
set).

– context_mod_inputs: The input is treated like the output of a convolutional layer when
applying context-dependent modulation.

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This method will return the current batch statistics of all batch normalization layers if distill_bn_stats
and use_batch_norm were set to True in the constructor.

Returns
The target tensors corresponding to the shapes specified in attribute
hyper_shapes_distilled.

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• x (torch.Tensor) – Batch of flattened input images.

Note: We assume the Tensorflow format, where the last entry denotes the number of
channels.

• weights (list or dict) – If a list of parameter tensors is given and context modulation
is used (see argument use_context_mod in constructor), then these parameters are inter-
preted as context- modulation parameters if the length of weights equals 2*len(net.
context_mod_layers). Otherwise, the length is expected to be equal to the length of the
attribute mnets.mnet_interface.MainNetInterface.param_shapes.

Alternatively, a dictionary can be passed with the possible keywords internal_weights
and mod_weights. Each keyword is expected to map onto a list of tensors. The keyword
internal_weights refers to all weights of this network except for the weights of the

136 Chapter 4. Main Networks

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

hypnettorch, Release 1.0

context-modulation layers. The keyword mod_weights, on the other hand, refers specif-
ically to the weights of the context-modulation layers. It is not necessary to specify both
keywords.

• distilled_params – Will be passed as running_mean and running_var arguments
of method utils.batchnorm_layer.BatchNormLayer.forward() if batch normal-
ization is used.

• condition (optional, int or dict) – If int is provided, then this argument
will be passed as argument stats_id to the method utils.batchnorm_layer.
BatchNormLayer.forward() if batch normalization is used.

If a dict is provided instead, the following keywords are allowed:

– bn_stats_id: Will be handled as stats_id of the batchnorm layers as described
above.

– cmod_ckpt_id: Will be passed as argument ckpt_id to the method utils.
context_mod_layer.ContextModLayer.forward().

Returns
The output of the network.

Return type
(torch.Tensor)

training: bool

4.8 ResNet for ImageNet

This module implements the class of Resnet networks described Table 1 of the following paper:

“Deep Residual Learning for Image Recognition”, He et al., 2015 https://arxiv.org/abs/1512.03385

Those networks are designed for inputs of size 224 x 224. In contrast, the Resnet family implemented by class mnets.
resnet.ResNet is primarily designed for CIFAR like inputs of size 32 x 32.

class hypnettorch.mnets.resnet_imgnet.ResNetIN(in_shape=(224, 224, 3), num_classes=1000,
use_bias=True, use_fc_bias=None,
num_feature_maps=(64, 64, 128, 256, 512),
blocks_per_group=(2, 2, 2, 2),
projection_shortcut=False, bottleneck_blocks=False,
cutout_mod=False, no_weights=False,
use_batch_norm=True, bn_track_stats=True,
distill_bn_stats=False, chw_input_format=False,
verbose=True, **kwargs)

Bases: Classifier

Hypernet-compatible Resnets for ImageNet.

The architecture of those Resnets is summarized in Table 4 of He et al.. They consist of 5 groups of convolutional
layers, where the first group only has 1 convolutional layer followed by a max-pooling operation. The other 4
groups consist of blocks (see blocks_per_group) of either 2 or 3 (see bottleneck_blocks) convolutional
layers per block. The network then computes its output via a final average pooling operation and a fully- connected
layer.

The number of layer per network is therewith 1 + sum(blocks_per_group) * 2 + 1, i.e., initial conv layer,
num. conv layers in all blocks (assuming bottleneck_blocks=False) and the final fully-connected layer. If

4.8. ResNet for ImageNet 137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

hypnettorch, Release 1.0

projection_shortcut=True, additional 1x1 conv layers are added for shortcuts where the feature maps tensor
shape changes.

Here are a few implementation details worth noting:

• If use_batch_norm=True, it would be redundant to add convolutional layers to the conv layers, there-
fore one should set use_bias=False, use_fc_bias=True. Skip connections never use biases.

• Online implementations vary in their use of projection or identity shortcuts. We offer both possibilities
(projection_shortcut). If projection_shortcut is used, then a batchnorm layer is added after
each projection.

Here are parameter configurations that can be used to obtain well-known Resnets (all configurations should use
use_bias=False, use_fc_bias=True):

• Resnet-18: blocks_per_group=(2,2,2,2), bottleneck_blocks=False

• Resnet-34: blocks_per_group=(3,4,6,3), bottleneck_blocks=False

• Resnet-50: blocks_per_group=(3,4,6,3), bottleneck_blocks=True

• Resnet-101: blocks_per_group=(3,4,23,3), bottleneck_blocks=True

• Resnet-152: blocks_per_group=(3,4,36,3), bottleneck_blocks=True

Parameters

• (....) – See arguments of class:mnets.wrn.WRN.

• num_feature_maps (tuple) – A list of 5 integers, each denoting the number of feature
maps in a group of convolutional layers.

Note: If bottleneck_blocks=True, then the last 1x1 conv layer in each block has 4 times
as many feature maps as specified by this argument.

• blocks_per_group (tuple) – A list of 4 integers, each denoting the number of convolu-
tional blocks for the groups of convolutional layers.

• projection_shortcut (bool) – If True, skip connections that otherwise would require
zero-padding or subsampling will be realized via 1x1 conv layers followed by batchnorm.
All other skip connections will be realized via identity mappings.

• bottleneck_blocks (bool) – Whether normal blocks or bottleneck blocks should be used
(cf. Fig. 5 in He et al.)

• cutout_mod (bool) – Sometimes, networks from this family are used for smaller (CIFAR-
like) images. In this case, one has to either upscale the images or adapt the architecture
slightly (otherwise, small images are too agressively downscaled at the very beginning).

When activating this option, the first conv layer is modified as described here, i.e., it uses a
kernel size of 3 with stride 1 and the max-pooling layer is omitted.

Note, in order to recover the same architecture as in the link above one has to additionally
set: use_bias=False, use_fc_bias=True, projection_shortcut=True.

Initialize the network.

Parameters

• num_classes – The number of output neurons.

138 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/functions.html#bool
https://github.com/uoguelph-mlrg/Cutout/blob/287f934ea5fa00d4345c2cccecf3552e2b1c33e3/model/resnet.py#L66

hypnettorch, Release 1.0

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This method will return the current batch statistics of all batch normalization layers if distill_bn_stats
and use_batch_norm were set to True in the constructor.

Returns
The target tensors corresponding to the shapes specified in attribute
hyper_shapes_distilled.

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.resnet.ResNet.forward(). We provide
some more specific information below.

• x (torch.Tensor) – Based on the constructor argument chw_input_format, either a
flattened image batch with encoding HWC or an unflattened image batch with encoding CHW
is expected.

Returns
The output of the network.

Return type
(torch.Tensor)

get_output_weight_mask(out_inds=None, device=None)
Create a mask for selecting weights connected solely to certain output units.

See docstring of overwritten super method mnets.mnet_interface.MainNetInterface.
get_output_weight_mask().

property has_bias

Getter for read-only attribute has_bias.

training: bool

4.9 SimpleRNN

Implementation of a simple recurrent neural network that has stacked vanilla RNN or LSTM layers that are optionally
enclosed by fully-connected layers.

An example usage is as a main model, where the main weights are initialized and protected by a method such as EWC,
and the context-modulation patterns of the neurons are produced by an external hypernetwork.

class hypnettorch.mnets.simple_rnn.SimpleRNN(n_in=1, rnn_layers=(10,), fc_layers_pre=(),
fc_layers=(1,), activation=Tanh(), use_lstm=False,
use_bias=True, no_weights=False, init_weights=None,
kaiming_rnn_init=False, context_mod_last_step=False,
context_mod_num_ts=-1,
context_mod_separate_layers_per_ts=False,
verbose=True, **kwargs)

4.9. SimpleRNN 139

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Bases: Module, MainNetInterface

Implementation of a simple RNN.

This is a simple recurrent network, that receives input vector x and outputs a vector y of real values.

Note: The output is non-linear if the last layer is recurrent! Otherwise, logits are returned (cmp. attribute
mnets.mnet_interface.MainNetInterface.has_fc_out).

Parameters

• n_in (int) – Number of inputs.

• rnn_layers (list or tuple) – List of integers. Each entry denotes the size of a recurrent
layer. Recurrent layers will simply be stacked as layers of this network.

If fc_layers_pre is empty, then the recurrent layers are the initial layers. If fc_layers
is empty, then the last entry of this list will denote the output size.

Note: This list may never be empty.

• fc_layers_pre (list or tuple) – List of integers. Before the recurrent layers a set
of fully-connected layers may be added. This might be specially useful when constructing
recurrent autoencoders. The entries of this list will denote the sizes of those layers.

If fc_layers_pre is not empty, its first entry will denote the input size of this network.

• fc_layers (list or tuple) – List of integers. After the recurrent layers, a set of fully-
connected layers is added. The entries of this list will denote the sizes of those layers.

If fc_layers is not empty, its last entry will denote the output size of this network.

• activation – The nonlinearity used in hidden layers.

• use_lstm (bool) – If set to True`, the recurrent layers will be LSTM layers.

• use_bias (bool) – Whether layers may have bias terms.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

• init_weights (list, optional) – This option is for convinience reasons. The option
expects a list of parameter values that are used to initialize the network weights. As such,
it provides a convinient way of initializing a network with a weight draw produced by the
hypernetwork.

Note, internal weights (see mnets.mnet_interface.MainNetInterface.weights) will
be affected by this argument only.

• kaiming_rnn_init (bool) – By default, PyTorch initializes its recurrent layers uniformly
with an interval defined by the square-root of the inverse of the layer size.

If this option is enabled, then the recurrent layers will be initialized using the kaiming init as
implemented by the function utils.torch_utils.init_params().

• context_mod_last_step (bool) – Whether context modulation is applied at the last time
step os a recurrent layer only. If False, context modulation is applied at every time step.

140 Chapter 4. Main Networks

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Note: This option only applies if use_context_mod is True.

• context_mod_num_ts (int, optional) – The maximum number of timesteps. If spec-
ified, context-modulation with a different set of weights is applied at every timestep. If
context_mod_separate_layers_per_ts is True, then a separate context-mod layer per
timestep will be created. Otherwise, a single context-mod layer is created, but the expected
parameter shapes for this layer are [context_mod_num_ts, *context_mod_shape].

Note: This option only applies if use_context_mod is True.

• context_mod_separate_layers_per_ts (bool) – If specified, a separate context-mod
layer per timestep is created (required if context_mod_no_weights is False).

Note: Only applies if context_mod_num_ts is specified.

• verbose (bool) – Whether to print information (e.g., the number of weights) during the
construction of the network.

• **kwargs – Keyword arguments regarding context modulation. This class can process the
same context-modulation related arguments as class mnets.mlp.MLP (plus the additional
ones noted above).

Initializes internal Module state, shared by both nn.Module and ScriptModule.

basic_rnn_step(d, t, x_t, h_t, int_weights, cm_weights, ckpt_id, is_last_step)
Perform vanilla rnn pass from inputs to hidden units.

Apply context modulation if necessary (i.e. if cm_weights is not None).

This function implements a step of an Elman RNN.

Note: We made the following design choice regarding context-modulation. In contrast to the LSTM, the
Elman network layer consists of “two steps”, updating the hidden state and computing an output based
on this hidden state. To be fair, context-mod should influence both these “layers”. Therefore, we apply
context-mod twice, but using the same weights. This of course assumes that the hidden state and output
vector have the same dimensionality.

Parameters

• d (int) – Index of the layer.

• t (int) – Current timestep.

• x_t – Tensor of size [batch_size, n_hidden_prev] with inputs.

• h_t (tuple) – Tuple of length 2, containing two tensors of size [batch_size,
n_hidden] with previous hidden states h and and previous outputs y.

Note: The previous outputs y are ignored by this method, since they are not required in
an Elman RNN step.

• int_weights – See docstring of method compute_hidden_states().

4.9. SimpleRNN 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_Jordan_networks
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

• cm_weights (list) – The weights of the context-mod layer, if context- mod should be
applied.

• ckpt_id – See docstring of method compute_hidden_states().

• is_last_step (bool) – Whether the current time step is the last one.

Returns

Tuple containing:

• h_t (torch.Tensor): The tensor h_t of size [batch_size, n_hidden] with the new hid-
den state.

• y_t (torch.Tensor): The tensor y_t of size [batch_size, n_hidden] with the new cell
state.

Return type
(tuple)

property bptt_depth

The truncation depth for backprop through time.

If -1, backprop through time (BPTT) will unroll all timesteps present in the input. Otherwise, the forward
pass will detach the RNN hidden states smaller or equal than num_timesteps - bptt_depth timesteps,
resulting in truncated BPTT (T-BPTT).

Type
int

compute_basic_rnn_output(h_t, int_weights, use_cm, cm_weights, cm_idx, ckpt_id, is_last_step)
Compute the output of a vanilla RNN given the hidden state.

Parameters

• (...) – See docstring of method basic_rnn_step().

• use_cm (boolean) – Whether context modulation is being used.

• cm_idx (int) – Index of the context-mod layer.

Returns
The output.

Return type
(torch.tensor)

compute_fc_outputs(h, fc_w_weights, fc_b_weights, num_fc_cm_layers, cm_fc_layer_weights, cm_offset,
cmod_cond, is_post_fc, ret_hidden)

Compute the forward pass through the fully-connected layers.

This method also appends activations to ret_hidden.

Parameters

• h (torch.Tensor) – The input from the previous layer.

• fc_w_weights (list) – The weights for the fc layers.

• fc_b_weights (list) – The biases for the fc layers.

• num_fc_cm_layers (int) – The number of context-modulation layers associated with
this set of fully-connected layers.

142 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• cm_fc_layer_weights (list) – The context-modulation weights associated with the
current layers.

• cm_offset (int) – The index to access the correct context-mod layers.

• cmod_cond (bool) – Some condition to perform context modulation.

• is_post_fc (bool) – layers of the network. In this case, there will be no activation applied
to the last layer outputs.

• ret_hidden (list or None) – The list where to append the hidden recurrent activations.

Returns

Tuple containing:

• ret_hidden: The hidden recurrent activations.

• h: Transformed activation h.

Return type
(Tuple)

compute_hidden_states(x, layer_ind, int_weights, cm_weights, ckpt_id, h_0=None, c_0=None)
Compute the hidden states for the recurrent layer layer_ind from a sequence of inputs 𝑥.

If so specified, context modulation is applied before or after the nonlinearities.

Parameters

• x – The inputs 𝑥 to the layer. 𝑥 has shape [sequence_len, batch_size,
n_hidden_prev].

• layer_ind (int) – Index of the layer.

• int_weights – Internal weights associated with this recurrent layer.

• cm_weights – Context modulation weights.

• ckpt_id – Will be passed as option ckpt_id to method utils.context_mod_layer.
ContextModLayer.forward() if context-mod layers are used.

• h_0 (torch.Tensor, optional) – The initial state for ℎ.

• c_0 (torch.Tensor, optional) – The initial state for 𝑐. Note that for LSTMs, if the
initial state is to be defined, this variable is necessary also, not only ℎ0, whereas for vanilla
RNNs it is enough to provide ℎ0 as 𝑐0 represents the output of the layer and it can be easily
computed from h_0.

Returns

Tuple containing:

• outputs (torch.Tensor): The sequence of visible hidden states given the input. It has shape
[sequence_len, batch_size, n_hidden].

• hiddens (torch.Tensor): The sequence of hidden states given the input. For LSTMs, this
corresponds to 𝑐. It has shape [sequence_len, batch_size, n_hidden].

Return type
(tuple)

4.9. SimpleRNN 143

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(x, weights=None, distilled_params=None, condition=None, return_hidden=False,
return_hidden_int=False)

Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

• weights (list or dict) – See argument weights of method mnets.mlp.MLP.
forward().

• condition (optional, int) – If provided, then this argument will be passed as
argument ckpt_id to the method utils.context_mod_layer.ContextModLayer.
forward().

• return_hidden (bool, optional) – If True, all hidden activations of fully-connected
and recurrent layers (where we defined 𝑦𝑡 as hidden state of vannila RNN layers as these
are the layer output passed to the next layer) are returned.

Specifically, hidden activations are the outputs of each hidden layer that are passed to the
next layer.

• return_hidden_int (bool, optional) – If True, in addition to hidden, an additional
variable hidden_int is returned containing the internal hidden states of recurrent layers
(i.e., the cell states 𝑐𝑡 for LSTMs and the actual hidden state ℎ𝑡 for Elman layers) are re-
turned. Since fully- connected layers have no such internal hidden activations, the corre-
sponding entry in hidden_int will be None.

Returns

Where the tuple is containing:

• output (torch.Tensor): The output of the network.

• hidden (list): If return_hidden is True, then the hidden activities of the layers are re-
turned, which have the shape (seq_length, batch_size, n_hidden).

• hidden_int (list): If return_hidden_int is True, then in addition to hidden a tensor
hidden_int per recurrent layer is returned containing internal hidden states. The list will
contain a None entry for each fully-connected layer to ensure same length as hidden.

Return type
(torch.Tensor or tuple)

get_cm_inds()

Get the indices of mnets.mnet_interface.MainNetInterface.param_shapes that are associated
with context-modulation.

Returns
List of integers representing indices of mnets.mnet_interface.MainNetInterface.
param_shapes.

144 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

Return type
(list)

get_cm_weights()

Get internal maintained weights that are associated with context- modulation.

Returns
List of weights from mnets.mnet_interface.MainNetInterface.internal_params
that are belonging to context-mod layers.

Return type
(list)

get_non_cm_weights()

Get internal weights that are not associated with context-modulation.

Returns
List of weights from mnets.mnet_interface.MainNetInterface.internal_params
that are not belonging to context-mod layers.

Return type
(list)

get_output_weight_mask(out_inds=None, device=None)
Get masks to select output weights.

See docstring of overwritten super method mnets.mnet_interface.MainNetInterface.
get_output_weight_mask().

init_hh_weights_orthogonal()

Initialize hidden-to-hidden weights orthogonally.

This method will overwrite the hidden-to-hidden weights of recurrent layers.

lstm_rnn_step(d, t, x_t, h_t, int_weights, cm_weights, ckpt_id, is_last_step)
Perform an LSTM pass from inputs to hidden units.

Apply masks to the temporal sequence for computing the loss. Obtained from:

https://mlexplained.com/2019/02/15/building-an-lstm-from-scratch-in-pytorch-lstms-in-depth-part-1/

and:

https://d2l.ai/chapter_recurrent-neural-networks/lstm.html

Parameters

• d (int) – Index of the layer.

• t (int) – Current timestep.

• x_t – Tensor of size [batch_size, n_inputs] with inputs.

• h_t (tuple) – Tuple of length 2, containing two tensors of size [batch_size,
n_hidden] with previous hidden states h and c.

• int_weights – See docstring of method basic_rnn_step().

• cm_weights – See docstring of method basic_rnn_step().

• ckpt_id – See docstring of method basic_rnn_step().

• is_last_step (bool) – See docstring of method basic_rnn_step().

4.9. SimpleRNN 145

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://mlexplained.com/2019/02/15/building-an-lstm-from-scratch-in-pytorch-lstms-in-depth-part-1/
https://d2l.ai/chapter_recurrent-neural-networks/lstm.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Returns

Tuple containing:

• h_t (torch.Tensor): The tensor h_t of size [batch_size, n_hidden] with the new hid-
den state.

• c_t (torch.Tensor): The tensor c_t of size [batch_size, n_hidden] with the new cell
state.

Return type
(tuple)

property num_rec_layers

Number of recurrent layers in this network (i.e., length of constructor argument rnn_layers).

Type
int

split_cm_weights(cm_weights, condition, num_ts=0)
Split context-mod weights per context-mod layer.

Parameters

• cm_weights (torch.Tensor) – All context modulation weights.

• condition (optional, int) – If provided, then this argument will be passed as
argument ckpt_id to the method utils.context_mod_layer.ContextModLayer.
forward().

• num_ts (int) – The length of the sequences.

Returns

Where the tuple contains:

• cm_inputs_weights: The cm input weights.

• cm_fc_pre_layer_weights: The cm pre-recurrent weights.

• cm_rec_layer_weights: The cm recurrent weights.

• cm_fc_layer_weights: The cm post-recurrent weights.

• n_cm_rec: The number of recurrent cm layers.

• cmod_cond: The context-mod condition.

Return type
(Tuple)

split_internal_weights(int_weights)
Split internal weights per layer.

Parameters
int_weights (torch.Tensor) – All internal weights.

Returns

Where the tuple contains:

• fc_pre_w_weights: The pre-recurrent w weights.

• fc_pre_b_weights: The pre-recurrent b weights.

• rec_weights: The recurrent weights.

146 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

• fc_w_weights:The post-recurrent w weights.

• fc_b_weights: The post-recurrent b weights.

Return type
(Tuple)

split_weights(weights)
Split weights into internal and context-mod weights.

Extract which weights should be used, I.e., are we using internally maintained weights or externally given
ones or are we even mixing between these groups.

Parameters
weights (torch.Tensor) – All weights.

Returns

Where the tuple contains:

• int_weights: The internal weights.

• cm_weights: The context-mod weights.

Return type
(Tuple)

training: bool

property use_lstm

See constructor argument use_lstm.

Type
bool

4.10 Wide-ResNet

The module mnets.wide_resnet implements the class of Wide Residual Networks as described in:

Zagoruyko et al., “Wide Residual Networks”, 2017.

class hypnettorch.mnets.wide_resnet.WRN(in_shape=(32, 32, 3), num_classes=10, n=4, k=10,
num_feature_maps=(16, 16, 32, 64), use_bias=True,
use_fc_bias=None, no_weights=False, use_batch_norm=True,
bn_track_stats=True, distill_bn_stats=False, dropout_rate=-1,
chw_input_format=False, verbose=True, **kwargs)

Bases: Classifier

Hypernet-compatible Wide Residual Network (WRN).

In the documentation of this class, we follow the notation of the original paper:

• 𝑙 - deepening factor (number of convolutional layers per residual block). In our case, 𝑙 is always going to
be 2, as this was the configuration found to work best by the authors.

• 𝑘 - widening factor (multiplicative factor for the number of features in a convolutional layer, see argument
k).

• 𝐵(3, 3) - the block structure. The numbers denote the size of the quadratic kernels used in each convo-
lutional layer from a block. Note, the authors found that 𝐵(3, 3) works best, which is why we use this
configuration.

4.10. Wide-ResNet 147

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1605.07146

hypnettorch, Release 1.0

• 𝑑 - total number of convolutional layers. Note, here we deviate from the original notation (where this
quantity is called 𝑛). Though, we want our notation to stay consistent with the one used in class mnets.
resnet.ResNet.

• 𝑛 - number of residual blocks in a group. Note, a resnet consists of 3 groups of residual blocks. See also
argument n of class mnets.resnet.ResNet.

Given this notation, the original paper denotes a WRN architecture via the following notation: WRN-d-k-B(3,3).
Note, 𝑑 contains the total number of convolutional layers (including the input layer and all residual connections
that are realized via 1x1 convolutions), but it does not contain the final fully-connected layer. The total depth
of the network (assuming residual connection do not add to this depth) remains 6𝑛 + 2 as for mnets.resnet.
ResNet.

Notable implementation differences to mnets.resnet.ResNet (some differences might vanish in the future,
this list was updated on 05/06/2020):

• Within a block, convolutional layers are preceeded by a batchnorm layer and the application of the non-
linearity. This changes the structure within a block and therefore, residual connections interface with the
network at different locations than in class mnets.resnet.ResNet.

• Dropout can be used. It will act right after the first convolutional layer of each block.

• If the number of feature maps differs along a skip connection or a downsampling has been applied, 1x1
convolutions rather than padding and manual downsampling is used.

Parameters

• in_shape (tuple or list) – The shape of an input sample in format HWC.

Note
We assume the Tensorflow format, where the last entry denotes the number of channels.
Also, see argument chw_input_format.

• num_classes (int) – The number of output neurons.

Note: The network outputs logits.

• n (int) – The number of residual blocks per group.

• k (int) – The widening factor. Feature maps in the 3 convolutional groups will be multiplied
by this number. See argument num_feature_maps.

• num_feature_maps (tuple) – A list of 4 integers, each denoting the number of feature maps
of convolutional layers in a certain group of the network architecture. The first entry is the
number of feature maps of the first convolutional layer, the remaining 3 numbers determine
the number of feature maps in the consecutive groups comprising 2𝑛 convolutional layers
each.

Note: The last 3 entries of this list are multiplied by the factor k. use_bias (bool): Whether
layers may have bias terms.

• use_bias (bool) – Whether layers may have bias terms.

Note: Bias terms are unnecessary in convolutional layers if batch normalization is used.
However, this option disables bias terms altogether (including in the final fully-connected
layer). See option use_fc_bias.

148 Chapter 4. Main Networks

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• use_fc_bias (optional, bool) – If None, the value will be linked to use_bias. Other-
wise, this option can alter the usage of bias terms in the final layer compared to the remaining
(convolutional) layers in the network.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

Note, this also affects the affine parameters of the batchnorm layer. I.e., if set to True, then
the argument affine of utils.batchnorm_layer.BatchNormLayerwill be set to False
and we expect the batchnorm parameters to be passed to the forward().

• use_batch_norm (bool) – Whether batch normalization should used. There will be a batch-
norm layer after each convolutional layyer (excluding possible 1x1 conv layers in the skip
connections). However, the logical order is as follows: batchnorm layer -> ReLU -> con-
volutional layer. Hence, a residual block (containing multiple of these logical units) starts
before a batchnorm layer and ends after a convolutional layer.

• bn_track_stats (bool) – See argument bn_track_stats of class mnets.resnet.
ResNet.

• distill_bn_stats (bool) – See argument bn_track_stats of class mnets.resnet.
ResNet.

• dropout_rate (float) – If -1, no dropout will be applied. Otherwise a number between
0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the first convolutional layers (and before the second batchnorm
layer) in each residual block.

• chw_input_format (bool) – Due to legacy reasons, the network expects by default flat-
tened images as input that were encoded in the HWC format. When enabling this option, the
network expects unflattened images in the CHW format (as typical for PyTorch).

• verbose (bool) – Allow printing of general information about the generated network (such
as number of weights).

• **kwargs – Keyword arguments regarding context modulation. This class can process the
same context-modulation related arguments as class mnets.mlp.MLP. One may addition-
ally specify the argument context_mod_apply_pixel_wise (see class mnets.resnet.
ResNet).

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This method will return the current batch statistics of all batch normalization layers if distill_bn_stats
and use_batch_norm were set to True in the constructor.

4.10. Wide-ResNet 149

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Returns
The target tensors corresponding to the shapes specified in attribute
hyper_shapes_distilled.

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.resnet.ResNet.forward(). We provide
some more specific information below.

• x (torch.Tensor) – Based on the constructor argument chw_input_format, either a
flattened image batch with encoding HWC or an unflattened image batch with encoding CHW
is expected.

Returns
The output of the network.

Return type
(torch.Tensor)

get_output_weight_mask(out_inds=None, device=None)
Create a mask for selecting weights connected solely to certain output units.

See docstring of overwritten super method mnets.mnet_interface.MainNetInterface.
get_output_weight_mask().

property has_bias

Getter for read-only attribute has_bias.

training: bool

4.11 The Convnet used by Zenke et al. for CIFAR-10/100

The module mnets/zenkenet contains a reimplementation of the network that was used in

“Continual Learning Through Synaptic Intelligence”, Zenke et al., 2017. https://arxiv.org/abs/1703.04200

class hypnettorch.mnets.zenkenet.ZenkeNet(in_shape=(32, 32, 3), num_classes=10, verbose=True,
arch='cifar', no_weights=False, init_weights=None,
dropout_rate=0.25)

Bases: Classifier

The network consists of four convolutional layers followed by two fully- connected layers. See implementation
for details.

ZenkeNet is a network introduced in

“Continual Learning Through Synaptic Intelligence”, Zenke et al., 2017.

See Appendix for details.

We use the same network for a fair comparison to the results reported in the paper.

Parameters

• in_shape (tuple or list) – The shape of an input sample.

150 Chapter 4. Main Networks

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1703.04200
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

Note: We assume the Tensorflow format, where the last entry denotes the number of chan-
nels.

• num_classes (int) – The number of output neurons. The chosen architecture (see arch)
will be adopted accordingly.

• verbose (bool) – Allow printing of general information about the generated network (such
as number of weights).

• arch (str) – The architecture to be employed. The following options are available.

– cifar: The convolutional network used by Zenke et al. for their proposed split CIFAR-
10/100 experiment.

• no_weights (bool) – If set to True, no trainable parameters will be constructed, i.e.,
weights are assumed to be produced ad-hoc by a hypernetwork and passed to the forward()
method.

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.

• dropout_rate (float) – If -1, no dropout will be applied. Otherwise a number between
0 and 1 is expected, denoting the dropout rate.

Dropout will be applied after the convolutional layers (before pooling) and after the first
fully-connected layer (after the activation function).

Note: For the FC layer, the dropout rate is doubled.

Initialize the network.

Parameters

• num_classes – The number of output neurons.

• verbose – Allow printing of general information about the generated network (such as num-
ber of weights).

distillation_targets()

Targets to be distilled after training.

See docstring of abstract super method mnets.mnet_interface.MainNetInterface.
distillation_targets().

This network does not have any distillation targets.

Returns
None

forward(x, weights=None, distilled_params=None, condition=None)
Compute the output 𝑦 of this network given the input 𝑥.

Parameters

• (....) – See docstring of method mnets.mnet_interface.MainNetInterface.
forward(). We provide some more specific information below.

4.11. The Convnet used by Zenke et al. for CIFAR-10/100 151

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

• x – Input image.

Note: We assume the Tensorflow format, where the last entry denotes the number of
channels.

Returns
The output of the network.

Return type
y

training: bool

152 Chapter 4. Main Networks

https://docs.python.org/3/library/functions.html#bool

CHAPTER

FIVE

UTILITIES AND HELPER FUNCTIONS

Contents

• Utilities and helper functions

– Batch Normalization

– Common command-line arguments

∗ Important note for contributors

– Context-modulation layer

– Elastic Weight Consolidation

– Helper functions for training Generative Adversarial Networks

– Hamiltonian-Monte-Carlo

– Hypernetwork Regularization

– Helper functions for weight initialization

– 2D-convolutional layer without weight sharing

– Console/file logging

– Miscellaneous Utilities

– Compute Parameter Changes without Update Steps

– Self-Attention Layer

– Synaptic Intelligence

– General helper functions for simulations

– Checkpointing PyTorch Models

This subpackage contains common helper functions to a variety of problems (e.g., PyTorch checkpointing, special
layers, computing diagonal Fisher matrices, . . .).

153

hypnettorch, Release 1.0

5.1 Batch Normalization

Implementation of a hypernet compatible batchnorm layer.

The joint use of batch-normalization and hypernetworks is not straight forward, mainly due to the statistics accumulated
by the batch-norm operation which expect the weights of the main network to only change slowly. If a hypernetwork
replaces the whole set of weights, the statistics previously estimated by the batch-norm layer might be completely off.

To circumvent this problem, we provide multiple solutions:

• In a continual learning setting with one set of weights per task, we can simply estimate and store statistics per
task (hence, the batch-norm operation has to be conditioned on the task).

• The statistics are distilled into the hypernetwork. This would require the addition of an extra loss term.

• The statistics can be treated as parameters that are outputted by the hypernetwork. In this case, nothing enforces
that these “statistics” behave similar to statistics that would result from a running estimate (hence, the resulting
operation might have nothing in common with batch- norm).

• Always use the statistics estimated on the current batch.

Note, we also provide the option of turning off the statistics, in which case the statistics will be set to zero mean and
unit variance. This is helpful when interpreting batch-normalization as a general form of gain modulation (i.e., just
applying a shift and scale to neural activities).

class hypnettorch.utils.batchnorm_layer.BatchNormLayer(num_features, momentum=0.1, affine=True,
track_running_stats=True,
frozen_stats=False, learnable_stats=False)

Bases: Module

Hypernetwork-compatible batch-normalization layer.

Note, batch normalization performs the following operation

𝑦 =
𝑥− E[𝑥]√︀
Var[𝑥] + 𝜖

* 𝛾 + 𝛽

This class allows to deviate from this standard implementation in order to provide the flexibility required when
using hypernetworks. Therefore, we slightly change the notation to

𝑦 =
𝑥−𝑚

(𝑡)
stats√︁

𝑣
(𝑡)
stats + 𝜖

* 𝛾(𝑡) + 𝛽(𝑡)

We use this notation to highlight that the running statistics 𝑚(𝑡)
stats and 𝑣

(𝑡)
stats are not necessarily estimates resulting

from mean and variance computation but might be learned parameters (e.g., the outputs of a hypernetwork).

We additionally use the superscript (𝑡) to denote that the gain 𝛾, offset 𝛽 and statistics may be dynamically
selected based on some external context information.

This class provides the possibility to checkpoint statistics 𝑚(𝑡)
stats and 𝑣

(𝑡)
stats, but not gains and offsets.

Note: If context-dependent gains 𝛾(𝑡) and offsets 𝛽(𝑡) are required, then they have to be maintained externally,
e.g., via a task-conditioned hypernetwork (see this paper for an example) and passed to the forward() method.

Parameters

• num_features – See argument num_features, for instance, of class torch.nn.
BatchNorm1d.

154 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://arxiv.org/abs/1906.00695
https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d

hypnettorch, Release 1.0

• momentum – See argument momentum of class torch.nn.BatchNorm1d.

• affine – See argument affine of class torch.nn.BatchNorm1d. If set to False, the
input activity will simply be “whitened” according to the applied layer statistics (except if
gain 𝛾 and offset 𝛽 are passed to the forward() method).

Note, if learnable_stats is False, then setting affine to False results in no learnable
weights for this layer (running stats might still be updated, but not via gradient descent).

Note, even if this option is False, one may still pass a gain 𝛾 and offset 𝛽 to the forward()
method.

• track_running_stats – See argument track_running_stats of class torch.nn.
BatchNorm1d.

• frozen_stats – If True, the layer statistics are frozen at their initial values of 𝛾 = 1 and
𝛽 = 0, i.e., layer activity will not be whitened.

Note, this option requires track_running_stats to be set to False.

• learnable_stats – If True, the layer statistics are initialized as learnable parameters
(requires_grad=True).

Note, these extra parameters will be maintained internally and not added to the weights.
Statistics can always be maintained externally and passed to the forward() method.

Note, this option requires track_running_stats to be set to False.

checkpoint_stats(device=None)
Buffers for a new set of running stats will be registered.

Calling this function will also increment the attribute num_stats.

Parameters
device (optional) – If not provided, the newly created statistics will either be moved to the
device of the most recent statistics or to CPU if no prior statistics exist.

forward(inputs, running_mean=None, running_var=None, weight=None, bias=None, stats_id=None)
Apply batch normalization to given layer activations.

Based on the state if this module (attribute training), the configuration of this layer and the parameters
currently passed, the behavior of this function will be different.

The core of this method still relies on the function torch.nn.functional.batch_norm(). In the fol-
lowing we list the different behaviors of this method based on the context.

In training mode:

We first consider the case that this module is in training mode, i.e., torch.nn.Module.train() has been
called.

Usually, during training, the running statistics are not used when computing the output, instead the statistics
computed on the current batch are used (denoted by use batch stats in the table below). However, the batch
statistics are typically updated during training (denoted by update running stats in the table below).

The above described scenario would correspond to passing batch statistics to the function torch.nn.
functional.batch_norm() and setting the parameter training to True.

5.1. Batch Normalization 155

https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/master/generated/torch.nn.functional.batch_norm.html#torch.nn.functional.batch_norm
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.train
https://pytorch.org/docs/master/generated/torch.nn.functional.batch_norm.html#torch.nn.functional.batch_norm
https://pytorch.org/docs/master/generated/torch.nn.functional.batch_norm.html#torch.nn.functional.batch_norm

hypnettorch, Release 1.0

training mode use batch stats update running stats
given stats Yes Yes
track running stats Yes Yes
frozen stats No No
learnable stats Yes Yes1

no track running stats Yes No

The meaning of each row in this table is as follows:

• given stats: External stats are provided via the parameters running_mean and running_var.

• track running stats: If track_running_stats was set to True in the constructor and no stats were
given.

• frozen stats: If frozen_stats was set to True in the constructor and no stats were given.

• learnable stats: If learnable_stats was set to True in the constructor and no stats were given.

• no track running stats: If none of the above options apply, then the statistics will always be computed
from the current batch (also in eval mode).

Note: If provided, running stats specified via running_mean and running_var always have priority.

In evaluation mode:

We now consider the case that this module is in evaluation mode, i.e., torch.nn.Module.eval() has
been called.

Here is the same table as above just for the evaluation mode.

evaluation mode use batch stats update running stats
track running stats No No
frozen stats No No
learnable stats No No
given stats No No
no track running stats Yes No

Parameters

• inputs – The inputs to the batchnorm layer.

• running_mean (optional) – Running mean stats 𝑚stats. This option has priority, i.e., any
internally maintained statistics are ignored if given.

Note: If specified, then running_var also has to be specified.

• running_var (optional) – Similar to option running_mean, but for the running vari-
ance stats 𝑣stats

Note: If specified, then running_mean also has to be specified.

1 We use a custom implementation to update the running statistics, that is compatible with backpropagation.

156 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.eval

hypnettorch, Release 1.0

• weight (optional) – The gain factors 𝛾. If given, any internal gains are ignored. If option
affine was set to False in the constructor and this option remains None, then no gains
are multiplied to the “whitened” inputs.

• bias (optional) – The behavior of this option is similar to option weight, except that
this option represents the offsets 𝛽.

• stats_id – This argument is optional except if multiple running stats checkpoints exist
(i.e., attribute num_stats is greater than 1) and no running stats have been provided to this
method.

Note: This argument is ignored if running stats have been passed.

Returns
The layer activation inputs after batch-norm has been applied.

get_stats(stats_id=None)
Get a set of running statistics (means and variances).

Parameters
stats_id (optional) – ID of stats. If not provided, the most recent stats are returned.

Returns

Tuple containing:

• running_mean

• running_var

Return type
(tuple)

property hyper_shapes

A list of list of integers. Each list represents the shape of a weight tensor that can be passed to the forward()
method. If all weights are maintained internally, then this attribute will be None.

Specifically, this attribute is controlled by the argument affine. If affine is True, this attribute will be
None. Otherwise this attribute contains the shape of 𝛾 and 𝛽.

Type
list or None

property num_stats

The number 𝑇 of internally managed statistics {(𝑚
(1)
stats, 𝑣

(1)
stats), . . . , (𝑚

(𝑇)
stats, 𝑣

(𝑇)
stats)}. This number is incre-

mented everytime the method checkpoint_stats() is called.

Type
int

property param_shapes

A list of list of integers. Each list represents the shape of a parameter tensor.

Note, this attribute is independent of the attribute weights, it always comprises the shapes of all weight
tensors as if the network would be stand-alone (i.e., no weights being passed to the forward() method).
Note, unless learnable_stats is enabled, the layer statistics are not considered here.

Type
list

5.1. Batch Normalization 157

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

training: bool

property weights

A list of all internal weights of this layer. If all weights are assumed to be generated externally, then this
attribute will be None.

Type
list or None

5.2 Common command-line arguments

This file has a collection of helper functions that can be used to specify command-line arguments. In particular, argu-
ments that are necessary for multiple experiments (even though with different default values) should be specified here,
such that we do not define arguments (and their help texts) multiple times.

All functions specified here are helper functions for a simulation specific argument parser such as cifar.train_args.
parse_cmd_arguments().

5.2.1 Important note for contributors

DO NEVER CHANGE DEFAULT VALUES. Instead, add a keyword argument to the corresponding method, that
allows you to change the default value, when you call the method.

hypnettorch.utils.cli_args.check_invalid_argument_usage(args)
This method checks for common conflicts when using the arguments defined by methods in this module.

The following things will be checked:

• Based on the optimizer choices specified in train_args(), we assert here that only one optimizer is
selected at a time.

• Assert that clip_grad_value and clip_grad_norm are not set at the same time.

• Assert that split_head_cl3 is only set for cl_scenario=3

• Assert that the arguments specified in function main_net_args() are correctly used.

Note: The checks can’t handle prefixes yet.

Parameters
args – The parsed command-line arguments, i.e., the output of method argparse.
ArgumentParser.parse_args().

Raises
ValueError – If invalid argument combinations are used.

hypnettorch.utils.cli_args.cl_args(parser, show_beta=True, dbeta=0.01, show_from_scratch=False,
show_multi_head=False, show_cl_scenario=False,
show_split_head_cl3=True, dcl_scenario=1, show_num_tasks=False,
dnum_tasks=1, show_num_classes_per_task=False,
dnum_classes_per_task=2,
show_calc_hnet_reg_targets_online=False,
show_hnet_reg_batch_size=False, dhnet_reg_batch_size=-1)

158 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3/library/exceptions.html#ValueError

hypnettorch, Release 1.0

This is a helper method of the method parse_cmd_arguments to add an argument group for typical continual
learning arguments.

Arguments specified in this function:

• beta

• train_from_scratch

• multi_head

• cl_scenario

• split_head_cl3

• num_tasks

• num_classes_per_task

• calc_hnet_reg_targets_online

• hnet_reg_batch_size

Parameters

• parser – Object of class argparse.ArgumentParser.

• show_beta – Whether option beta should be shown.

• dbeta – Default value of option beta.

• show_from_scratch – Whether option train_from_scratch should be shown.

• show_multi_head – Whether option multi_head should be shown.

• show_cl_scenario – Whether option cl_scenario should be shown.

• show_split_head_cl3 – Whether option split_head_cl3 should be shown. Only has an
effect if show_cl_scenario is True.

• dcl_scenario – Default value of option cl_scenario.

• show_num_tasks – Whether option num_tasks should be shown.

• dnum_tasks – Default value of option num_tasks.

• show_num_classes_per_task – Whether option show_num_classes_per_task should be
shown.

• dnum_classes_per_task – Default value of option dnum_classes_per_task.

• show_calc_hnet_reg_targets_online (bool) – Whether the option
calc_hnet_reg_targets_online should be provided.

• show_hnet_reg_batch_size (bool) – Whether the option hnet_reg_batch_size should be
provided.

• dhnet_reg_batch_size (int) – Default value of option hnet_reg_batch_size.

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.data_args(parser, show_disable_data_augmentation=False,
show_data_dir=False, ddata_dir='.')

This is a helper method of the function parse_cmd_arguments to add an argument group for typical dataset
related options.

5.2. Common command-line arguments 159

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Arguments specified in this function:

• disable_data_augment

Parameters

• parser – Object of class argparse.ArgumentParser.

• show_disable_data_augmentation (bool) – Whether option dis-
able_data_augmentation should be shown.

• show_data_dir (bool) – Whether option data_dir should be shown.

• ddata_dir (str) – Default value of option data_dir.

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.eval_args(parser, dval_iter=500, show_val_batch_size=False,
dval_batch_size=256, show_val_set_size=False, dval_set_size=0,
show_test_with_val_set=False)

This is a helper method of the method parse_cmd_arguments to add an argument group for validation and testing
options.

Arguments specified in this function:

• val_iter

• val_batch_size

• val_set_size

• test_with_val_set

Parameters

• parser – Object of class argparse.ArgumentParser.

• dval_iter (int) – Default value of argument val_iter.

• show_val_batch_size (bool) – Whether the val_batch_size argument should be shown.

• dval_batch_size (int) – Default value of argument val_batch_size.

• show_val_set_size (bool) – Whether the val_set_size argument should be shown.

• dval_set_size (int) – Default value of argument val_set_size.

• show_test_with_val_set (bool) – Whether the test_with_val_set argument should be
shown.

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.gan_args(parser)
This is a helper method of the method parse_cmd_arguments to add an argument group for options to configure
the generator and discriminator network.

Deprecated since version 1.0: Please use method main_net_args() and generator_args() instead.

Parameters
parser – Object of class argparse.ArgumentParser.

160 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

hypnettorch, Release 1.0

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.generator_args(agroup, dlatent_dim=3)
This is a helper method of the method parse_cmd_arguments (or more specifically an auxillary method to
train_args()) to add arguments to an argument group for options specific to a main network that should
act as a generator.

Arguments specified in this function:

• latent_dim

• latent_std

Parameters

• agroup – The argument group returned by, for instance, function main_net_args().

• dlatent_dim – Default value of option latent_dim.

hypnettorch.utils.cli_args.hnet_args(parser, allowed_nets=['hmlp'], dhmlp_arch='100,100',
show_cond_emb_size=True, dcond_emb_size='8',
dchmlp_chunk_size=1000, dchunk_emb_size=8,
show_use_cond_chunk_embs=True, dhdeconv_shape='512,512,3',
prefix=None, pf_name=None, **kwargs)

This is a helper function to add an argument group for hypernetwork- specific arguments to a given argument
parser.

Arguments specified in this function:

• hnet_type

• hmlp_arch

• cond_emb_size

• chmlp_chunk_size

• chunk_emb_size

• use_cond_chunk_embs

• hdeconv_shape

• hdeconv_num_layers

• hdeconv_filters

• hdeconv_kernels

• hdeconv_attention_layers

Parameters

• parser (argparse.ArgumentParser) – The parser to which an argument group should
be added

• allowed_nets (list) – List of allowed network identifiers. The following identifiers are
considered (note, we also reference the network that each network type targets):

– 'hmlp': hnets.mlp_hnet.HMLP

– 'chunked_hmlp': hnets.chunked_mlp_hnet.ChunkedHMLP

– 'structured_hmlp': hnets.structured_mlp_hnet.StructuredHMLP

5.2. Common command-line arguments 161

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

– 'hdeconv': hnets.deconv_hnet.HDeconv

– 'chunked_hdeconv': hnets.chunked_deconv_hnet.ChunkedHDeconv

• dhmlp_arch (str) – Default value of option hmlp_arch.

• show_cond_emb_size (bool) – Whether the option cond_emb_size should be provided.

• dcond_emb_size (int) – Default value of option cond_emb_size.

• dchmlp_chunk_size (int) – Default value of option chmlp_chunk_size.

• dchunk_emb_size (int) – Default value of option chunk_emb_size.

• show_use_cond_chunk_embs (bool) – Whether the option use_cond_chunk_embs should
be provided (if applicable to network types).

• dhdeconv_shape (str) – Default value of option hdeconv_shape.

• prefix (str, optional) – If arguments should be instantiated with a certain prefix. E.g.,
a setup requires several hypernetworks, that may need different settings. For instance:
prefix='gen_'.

• pf_name (str, optional) – A name of type of hypernetwork for which that prefix is
needed. For instance: prefix='generator'.

• **kwargs – Keyword arguments to configure options that are common across main networks
(note, a hypernet is just a special main network). See arguments of main_net_args().

Returns
The created argument group containing the desired options.

Return type
(argparse._ArgumentGroup)

hypnettorch.utils.cli_args.init_args(parser, custom_option=True, show_normal_init=True,
show_hyper_fan_init=False)

This is a helper method of the method parse_cmd_arguments to add an argument group for options regarding
network initialization.

Arguments specified in this function:

• custom_network_init

• normal_init

• std_normal_init

• std_normal_temb

• std_normal_emb

• hyper_fan_init

Parameters

• parser – Object of class argparse.ArgumentParser.

• custom_option (bool) – Whether the option custom_network_init should be provided.

• show_normal_init (bool) – Whether the option normal_init and std_normal_init should
be provided.

• show_hyper_fan_init (bool) – Whether the option hyper_fan_init should be provided.

162 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.main_net_args(parser, allowed_nets=['mlp'], dmlp_arch='100,100',
dlenet_type='mnist_small', dcmlp_arch='10,10',
dcmlp_chunk_arch='10,10', dcmlp_in_cdim=100,
dcmlp_out_cdim=10, dcmlp_cemb_dim=8,
dresnet_block_depth=5, dresnet_channel_sizes='16,16,32,64',
dwrn_block_depth=4, dwrn_widening_factor=10,
diresnet_channel_sizes='64,64,128,256,512',
diresnet_blocks_per_group='2,2,2,2', dsrnn_rec_layers='10',
dsrnn_pre_fc_layers='', dsrnn_post_fc_layers='',
dsrnn_rec_type='lstm', show_net_act=True, dnet_act='relu',
show_no_bias=False, show_dropout_rate=True,
ddropout_rate=-1, show_specnorm=True,
show_batchnorm=True, show_no_batchnorm=False,
show_bn_no_running_stats=False,
show_bn_distill_stats=False,
show_bn_no_stats_checkpointing=False, prefix=None,
pf_name=None)

This is a helper function for the function parse_cmd_arguments to add an argument group for options to a main
network.

Arguments specified in this function:

• net_type

• fc_arch

• mlp_arch

• lenet_type

• cmlp_arch

• cmlp_chunk_arch

• cmlp_in_cdim

• cmlp_out_cdim

• cmlp_cemb_dim

• resnet_block_depth

• resnet_channel_sizes

• wrn_block_depth

• wrn_widening_factor

• wrn_use_fc_bias

• iresnet_use_fc_bias

• iresnet_channel_sizes

• iresnet_blocks_per_group

• iresnet_bottleneck_blocks

• iresnet_projection_shortcut

• srnn_rec_layers

5.2. Common command-line arguments 163

hypnettorch, Release 1.0

• srnn_pre_fc_layers

• srnn_post_fc_layers

• srnn_no_fc_out

• srnn_rec_type

• net_act

• no_bias

• dropout_rate

• specnorm

• batchnorm

• no_batchnorm

• bn_no_running_stats

• bn_distill_stats

• bn_no_stats_checkpointing

Parameters

• parser (argparse.ArgumentParser) – The argument parser to which the argument group
should be added.

• allowed_nets (list) – List of allowed network identifiers. The following identifiers are
considered (note, we also reference the network that each network type targets):

– mlp: mnets.mlp.MLP

– lenet: mnets.lenet.LeNet

– resnet: mnets.resnet.ResNet

– wrn: mnets.wide_resnet.WRN

– iresnet: mnets.resnet_imgnet.ResNetIN

– zenke: mnets.zenkenet.ZenkeNet

– bio_conv_net: mnets.bio_conv_net.BioConvNet

– chunked_mlp: mnets.chunk_squeezer.ChunkSqueezer

– simple_rnn: mnets.simple_rnn.SimpleRNN

• dmlp_arch – Default value of option mlp_arch.

• dlenet_type – Default value of option lenet_type.

• dcmlp_arch – Default value of option cmlp_arch.

• dcmlp_chunk_arch – Default value of option cmlp_chunk_arch.

• dcmlp_in_cdim – Default value of option cmlp_in_cdim.

• dcmlp_out_cdim – Default value of option cmlp_out_cdim.

• dcmlp_cemb_dim – Default value of option cmlp_cemb_dim.

• dresnet_block_depth – Default value of option resnet_block_depth.

• dresnet_channel_sizes – Default value of option resnet_channel_sizes.

164 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

• dwrn_block_depth – Default value of option wrn_block_depth.

• dwrn_widening_factor – Default value of option wrn_widening_factor.

• diresnet_channel_sizes – Default value of option iresnet_channel_sizes.

• diresnet_blocks_per_group – Default value of option iresnet_blocks_per_group.

• dsrnn_rec_layers – Default value of option srnn_rec_layers.

• dsrnn_pre_fc_layers – Default value of option srnn_pre_fc_layers.

• dsrnn_post_fc_layers – Default value of option srnn_post_fc_layers.

• dsrnn_rec_type – Default value of option srnn_rec_type.

• show_net_act (bool) – Whether the option net_act should be provided.

• dnet_act – Default value of option net_act.

• show_no_bias (bool) – Whether the option no_bias should be provided.

• show_dropout_rate (bool) – Whether the option dropout_rate should be provided.

• ddropout_rate – Default value of option dropout_rate.

• show_specnorm (bool) – Whether the option specnorm should be provided.

• show_batchnorm (bool) – Whether the option batchnorm should be provided.

• show_no_batchnorm (bool) – Whether the option no_batchnorm should be provided.

• show_bn_no_running_stats (bool) – Whether the option bn_no_running_stats should
be provided.

• show_bn_distill_stats (bool) – Whether the option bn_distill_stats should be pro-
vided.

• show_bn_no_stats_checkpointing (bool) – Whether the option
bn_no_stats_checkpointing should be provided.

• prefix (optional) – If arguments should be instantiated with a certain prefix. E.g., a
setup requires several main network, that may need different settings. For instance: pre-
fix=:code:prefix=’gen_’.

• pf_name (optional) – A name of the type of main net for which that prefix is needed. For
instance: prefix=:code:’generator’.

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.miscellaneous_args(parser, big_data=True, synthetic_data=False,
show_plots=False, no_cuda=False, dout_dir=None,
show_publication_style=False)

This is a helper method of the method parse_cmd_arguments to add an argument group for miscellaneous argu-
ments.

Arguments specified in this function:

• num_workers

• out_dir

• use_cuda

• no_cuda

5.2. Common command-line arguments 165

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• loglevel_info

• deterministic_run

• publication_style

• show_plots

• data_random_seed

• random_seed

Parameters

• parser – Object of class argparse.ArgumentParser.

• big_data – If the program processes big datasets that need to be loaded from disk on the
fly. In this case, more options are provided.

• synthetic_data – If data is randomly generated, then we want to decouple this randomness
from the training randomness.

• show_plots – Whether the option show_plots should be provided.

• no_cuda – If True, the user has to explicitly set the flag –use_cuda rather than using CUDA
by default.

• dout_dir (optional) – Default value of option out_dir. If None, the default value will
be ./out/run_<YY>-<MM>-<DD>_<hh>-<mm>-<ss> that contains the current date and
time.

• show_publication_style – Whether the option publication_style should be provided.

Returns
The created argument group, in case more options should be added.

hypnettorch.utils.cli_args.train_args(parser, show_lr=False, dlr=0.1, show_epochs=False, depochs=-1,
dbatch_size=32, dn_iter=100001, show_use_adam=False,
dadam_beta1=0.9, show_use_rmsprop=False,
show_use_adadelta=False, show_use_adagrad=False,
show_clip_grad_value=False, show_clip_grad_norm=False,
show_adam_beta1=False, show_momentum=True)

This is a helper method of the method parse_cmd_arguments to add an argument group for options to configure
network training.

Arguments specified in this function:

• batch_size

• n_iter

• epochs

• lr

• momentum

• weight_decay

• use_adam

• adam_beta1

• use_rmsprop

• use_adadelta

166 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

hypnettorch, Release 1.0

• use_adagrad

• clip_grad_value

• clip_grad_norm

Parameters

• parser – Object of class argparse.ArgumentParser.

• show_lr – Whether the lr - learning rate - argument should be shown. Might not be desired
if individual learning rates per optimizer should be specified.

• dlr – Default value for option lr.

• show_epochs – Whether the epochs argument should be shown.

• depochs – Default value for option epochs.

• dbatch_size – Default value for option batch_size.

• dn_iter – Default value for option n_iter.

• show_use_adam – Whether the use_adam argument should be shown. Will also show the
adam_beta1 argument.

• dadam_beta1 – Default value for option adam_beta1.

• show_use_rmsprop – Whether the use_rmsprop argument should be shown.

• show_use_adadelta – Whether the use_adadelta argument should be shown.

• show_use_adagrad – Whether the use_adagrad argument should be shown.

• show_clip_grad_value – Whether the clip_grad_value argument should be shown.

• show_clip_grad_norm – Whether the clip_grad_norm argument should be shown.

• show_adam_beta1 – Whether the adam_beta1 argument should be shown. Note, this argu-
ment is also shown when show_use_adam is True.

• show_momentum – Whether the momentum argument should be shown.

Returns
The created argument group, in case more options should be added.

5.3 Context-modulation layer

This module should represent a special gain-modulation layer that can modulate neural computation based on an ex-
ternal context.

class hypnettorch.utils.context_mod_layer.ContextModLayer(num_features, no_weights=False,
no_gains=False, no_shifts=False,
apply_gain_offset=False,
apply_gain_softplus=False,
softplus_scale=1.0)

Bases: Module

Implementation of a layer that can apply context-dependent modulation on the level of neuronal computation.

The layer consists of two parameter vectors: gains g and shifts s, whereas gains represent a multiplicative mod-
ulation of input activations and shifts an additive modulation, respectively.

5.3. Context-modulation layer 167

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

hypnettorch, Release 1.0

Note, the weight vectors g and s might also be passed to the forward()method, where one may pass a separate
set of parameters for each sample in the input batch.

Example

Assume that a ContextModLayer is applied between a linear (fully-connected) layer y ≡ 𝑊x + b with input
x and a nonlinear activation function 𝑧 ≡ 𝜎(𝑦).

The layer-computation in such a case will become

𝜎
(︀
(𝑊x + b) ⊙ g + s

)︀
Parameters

• num_features (int or tuple) – Number of units in the layer (size of parameter vectors
g and s).

In case a tuple of integers is provided, the gain g and shift s parameters will become mul-
tidimensional tensors with the shape being prescribed by num_features. Please note the
broadcasting rules as g and s are simply multiplied or added to the input.

Example

Consider the output of a convolutional layer with output shape [B,C,W,H]. In case there
should be a scalar gain and shift per feature map, num_features could be [C,1,1] or [1,
C,1,1] (one might also pass a shape [B,C,1,1] to the forward()method to apply separate
shifts and gains per sample in the batch).

Alternatively, one might want to provide shift and gain per output unit, i.e., num_features
should be [C,W,H]. Note, that due to weight sharing, all output activities within a feature
map are computed using the same weights, which is why it is common practice to share shifts
and gains within a feature map (e.g., in Spatial Batch-Normalization).

• no_weights (bool) – If True, the layer will have no trainable weights (g and s). Hence,
weights are expected to be passed to the forward() method.

• no_gains (bool) – If True, no gain parameters g will be modulating the input activity.

Note: Arguments no_gains and no_shifts might not be activated simultaneously!

• no_shifts (bool) – If True, no shift parameters s will be modulating the input activity.

• apply_gain_offset (bool, optional) – If activated, this option will apply a constant
offset of 1 to all gains, i.e., the computation becomes

𝜎
(︀
(𝑊x + b) ⊙ (1 + g) + s

)︀
When could that be useful? In case the gains and shifts are generated by the same hypernet-
work, a meaningful initialization might be difficult to achieve (e.g., such that gains are close
to 1 and shifts are close to 0 at the beginning). Therefore, one might initialize the hypernet-
work such that all outputs are close to zero at the beginning and the constant shift ensures
that meaningful gains are applied.

168 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting- semantics
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• apply_gain_softplus (bool, optional) – If activated, this option will enforce poitive
gain modulation by sending the gain weights g through a softplus function (scaled by 𝑠, see
softplus_scale).

g =
1

𝑠
log(1 + exp(g · 𝑠))

• softplus_scale (float) – If option apply_gain_softplus is True, then this will de-
termine the sclae of the softplus function.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

checkpoint_weights(device=None, no_reinit=False)
Checkpoint and reinit the current weights.

Buffers for a new checkpoint will be registered and the current weights will be copied into them. Addition-
ally, the current weights will be reinitialized (gains to 1 and shifts to 0).

Calling this function will also increment the attribute num_ckpts.

Note: This method uses the method torch.nn.Module.register_buffer() rather than the method
torch.nn.Module.register_parameter() to create checkpoints. The reason is, that we don’t want the
checkpoints to appear as trainable weights (when calling torch.nn.Module.parameters()). However,
that means that training on checkpointed weights cannot be continued unless they are copied back into an
actual torch.nn.Parameter object.

Parameters

• device (optional) – If not provided, the newly created checkpoint will be moved to the
device of the current weights.

• no_reinit (bool) – If True, the actual weights will not be reinitialized.

forward(x, weights=None, ckpt_id=None, bs_dim=0)
Apply context-dependent gain modulation.

Computes x⊙ g + s, where x denotes the input activity x.

Parameters

• x – The input activity.

• weights – Weights that should be used instead of the internally maintained once (deter-
mined by attribute weights). Note, if no_weights was True in the constructor, then this
parameter is mandatory.

Usually, the shape of the passed weights should follow the attribute param_shapes, which
is a tuple of shapes [[num_features], [num_features]] (at least for linear layers,
see docstring of argument num_features in the constructor for more details). However,
one may also specify a seperate set of context-mod parameters per input sample. As-
sume x has shape [num_samples, num_features]. Then weights may have the shape
[[num_samples, num_features], [num_samples, num_features]].

• ckpt_id (int) – This argument can be set in case a checkpointed set of weights should be
used to compute the forward pass (see method checkpoint_weights()).

Note: This argument is ignored if weights is not None.

5.3. Context-modulation layer 169

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.register_buffer
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.register_parameter
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.parameters
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• bs_dim (int) – Batch size dimension in input tensor x.

Returns
The modulated input activity.

property gain_offset_applied

Whether constructor argument apply_gain_offset was activated.

Thus, whether an offset for the gain g is applied.

Type
bool

property gain_softplus_applied

Whether constructor argument apply_gain_softplus was activated.

Thus, whether a softplus function for the gain g is applied.

Type
bool

get_weights(ckpt_id=None)
Get the current (or a set of checkpointed) weights of this context- mod layer.

Parameters
ckpt_id (optional) – ID of checkpoint. If not provided, the current set of weights is re-
turned. If ckpt_id == self.num_ckpts, then this method also returns the current weights,
as the checkpoint has not been created yet.

Returns

Tuple containing:

• gain: Is None if layer has no gains.

• shift: Is None if layer has no shifts.

Return type
(tuple)

property has_gains

Is True if no_gains was not set in the constructor.

Thus, whether gains g are part of the computation of this layer.

Type
bool

property has_shifts

Is True if no_shifts was not set in the constructor.

Thus, whether shifts s are part of the computation of this layer.

Type
bool

normal_init(std=1.0)
Reinitialize internal weights using a normal distribution.

Parameters
std (float) – Standard deviation of init.

170 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

property num_ckpts

The number of existing weight checkpoints (i.e., how often the method checkpoint_weights() was
called).

Type
int

property param_shapes

A list of list of integers. Each list represents the shape of a parameter tensor. Note, this attribute is indepen-
dent of the attribute weights, it always comprises the shapes of all weight tensors as if the network would
be stand- alone (i.e., no weights being passed to the forward() method).

Note: The weights passed to the forward()method might deviate from these shapes, as we allow passing
a distinct set of parameters per sample in the input batch.

Type
list

property param_shapes_meta

List of strings. Each entry represents the meaning of the corresponding entry in param_shapes. The
following keywords are possible:

• 'gain': The corresponding shape in param_shapes denotes the gain g parameter.

• 'shift': The corresponding shape in param_shapes denotes the shift s parameter.

Type
list

preprocess_gain(gain)
Obtains gains g used for mudulation.

Depending on the user configuration, gains might be preprocessed before applied for context-modulation
(e.g., see attributes gain_offset_applied or gain_softplus_applied). This method transforms raw
gains such that they can be applied to the network activation.

Note: This method is called by the forward() to transform given gains.

Parameters
gain (torch.Tensor) – A gain tensor.

Returns
The transformed gains.

Return type
(torch.Tensor)

sparse_init(sparsity=0.8)
Reinitialize internal weights sparsely.

Gains will be initialized such that sparisity * 100 percent of them will be 0, the remaining ones will
be 1. Shifts are initialized to 0.

5.3. Context-modulation layer 171

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

Parameters
sparsity (float) – A number between 0 and 1 determining the spasity level of gains.

training: bool

uniform_init(width=1.0)
Reinitialize internal weights using a uniform distribution.

Parameters
width (float) – The range of the uniform init will be determined as [mean-width,
mean+width], where mean is 0 for shifts and 1 for gains.

property weights

A list of all internal weights of this layer.

If all weights are assumed to be generated externally, then this attribute will be None.

Type
torch.nn.ParameterList or None

5.4 Elastic Weight Consolidation

Implementation of EWC:
https://arxiv.org/abs/1612.00796

Note, these implementation are based on the descriptions provided in:
https://arxiv.org/abs/1809.10635

The code is inspired by the corresponding implementation:
https://git.io/fjcnL

hypnettorch.utils.ewc_regularizer.compute_fisher(task_id, data, params, device, mnet, hnet=None,
empirical_fisher=True, online=False, gamma=1.0,
n_max=-1, regression=False, time_series=False,
allowed_outputs=None, custom_forward=None,
custom_nll=None, pass_ids=False,
proper_scaling=False, prior_strength=None,
regression_lvar=1.0, target_manipulator=None)

Compute estimates of the diagonal elements of the Fisher information matrix, as needed as importance-weights
by elastic weight consolidation (EWC).

The Fisher matrix for a conditional distribution 𝑝(𝑦 | 𝜃, 𝑥) (i.e., the model likelihood for a model with parameters
𝜃) is defined as follows at location 𝑥

ℱ(𝑥) = Var
[︀
∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)

]︀
= E𝑝(𝑦|𝜃,𝑥)

[︀
∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)𝑇

]︀
In practice, we are often interested in the Fisher averaged over locations

ℱ = E𝑝(𝑥)[ℱ(𝑥)]

Since the model is trained, such that in-distribution the model likelihood 𝑝(𝑦 | 𝜃, 𝑥) and the ground-truth like-
lihood 𝑝(𝑦 | 𝑥) agree, people often refer to the empirical Fisher, which utilizes the dataset for computation and
therewith doesn’t require sampling from the model likelihood. Note, EWC anyway assumes that in-distribution

172 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList
https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1809.10635
https://git.io/fjcnL

hypnettorch, Release 1.0

𝑝(𝑦 | 𝜃, 𝑥) = 𝑝(𝑦 | 𝑥) in order to be able to replace the Hessian by the Fisher matrix.

ℱ𝑒𝑚𝑝 = E𝑝(𝑥,𝑦)

[︀
∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)𝑇

]︀
= E𝑝(𝑥)

[︁
E𝑝(𝑦|𝑥)

[︀
∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)∇𝜃 log 𝑝(𝑦 | 𝜃, 𝑥)𝑇

]︀]︁
≈ 1

|𝒟|
∑︁

(𝑥𝑛,𝑦𝑛)∼𝒟

[︀
∇𝜃 log 𝑝(𝑦𝑛 | 𝜃, 𝑥𝑛)∇𝜃 log 𝑝(𝑦𝑛 | 𝜃, 𝑥𝑛)𝑇

]︀]︁

Note: This method registers buffers in the given module (storing the current parameters and the estimate of the
Fisher diagonal elements), i.e., the mnet if hnet is None, otherwise the hnet.

Parameters

• task_id – The ID of the current task, needed to store the computed tensors with a unique
name. When hnet is given, it is used as input to the hnet forward method to select the
current task embedding.

• data – A data handler. We will compute the Fisher estimate across the whole training set
(except n_max is specified).

• params – A list of parameter tensors from the module of which we aim to compute the
Fisher for. If hnet is given, then these are assumed to be the “theta” parameters, that we
pass to the forward function of the hypernetwork. Otherwise, these are the “weights” passed
to the forward method of the main network. Note, they might not be detached from their
original parameters, because we use backward() on the computational graph to read out
the .grad variable. Note, the order in which these parameters are passed to this method
and the corresponding EWC loss function must not change, because the index within the
“params” list will be used as unique identifier.

• device – Current PyTorch device.

• mnet – The main network. If hnet is None, then params are assumed to belong to this
network. The fisher estimate will be computed accordingly. Note, params might be the
output of a task-conditioned hypernetwork, i.e., weights for a specific task. In this case,
“online”-EWC doesn’t make much sense, as we don’t follow the Bayesian view of using the
old task weights as prior for the current ones. Instead, we have a new set of weights for all
tasks.

• hnet (optional) – If given, params is assumed to correspond to the unconditional weights
𝜃 (which does not include, for instance, task embeddings) of the hypernetwork. In this case,
the diagonal Fisher entries belong to weights of the hypernetwork. The Fisher will then be
computed based on the probability 𝑝(𝑦 | 𝑥, task_id), where task_id is just a constant input
(representing the corresponding conditional weights, e.g., task embedding) in addition to the
training samples 𝑥.

• empirical_fisher – If True, we compute the Fisher based on training targets.

• online – If True, then we use online EWC, hence, there is only one diagonal Fisher ap-
proximation and one target parameter value stored at the time, rather than for all previous
tasks.

• gamma – The gamma parameter for online EWC, controlling the gradual decay of previous
tasks.

• n_max (optional) – If not -1, this will be the maximum amount of samples considered for
estimating the Fisher.

5.4. Elastic Weight Consolidation 173

hypnettorch, Release 1.0

• regression – Whether the task at hand is a classification or regression task. If True, a
regression task is assumed. For simplicity, we assume the following probabilistic model
𝑝(𝑦 | 𝑥) = 𝒩

(︀
𝑓(𝑥), 𝐼

)︀
with 𝐼 being the identity matrix. In this case, the only term of the

log probability that influence the gradient is the MSE: log 𝑝(𝑦 | 𝑥) = ‖𝑓(𝑥) − 𝑦‖2 + const

• time_series (bool) – If True, the output of the main network mnet is expected to be a
time series. In particular, we assume that the output is a tensor of shape [S, N, F], where
S is the length of the time series, N is the batch size and F is the size of each feature vector
(e.g., in classification, F would be the number of classes).

Let y = (y1, . . .y𝑆) be the output of the main network. We denote the parameters params
by 𝜃 and the input by x (which we do not consider as random). We use the following decom-
position of the likelihood

𝑝(y | 𝜃;x) =

𝑆∏︁
𝑖=1

𝑝(y𝑖 | y1, . . . ,y𝑖−1, 𝜃;x𝑖)

Classification: If 𝑓(x𝑖,h𝑖−1, 𝜃) denotes the output of the main network mnet for timestep
𝑖 (assuming h𝑖−1 is the most recent hidden state), we assume

𝑝(y𝑖 | y1, . . . ,y𝑖−1, 𝜃;x𝑖) ≡ softmax
(︀
𝑓(x𝑖,h𝑖−1, 𝜃)

)︀
Hence, we assume that we can write the negative log-likelihood (NLL) as follows given a
label 𝑡 ∈ [1, . . . , 𝐹]𝑆 :

NLL = − log 𝑝(𝑌 = 𝑡 | 𝜃;x)

=

𝑆∑︁
𝑖=1

−softmax
(︀
𝑓(x𝑖,h𝑖−1, 𝜃)𝑡𝑖

)︀
=

𝑆∑︁
𝑖=1

cross_entropy
(︀
𝑓(x𝑖,h𝑖−1, 𝜃), 𝑡𝑖

)︀
Thus, we simply sum the cross-entropy losses per time-step to estimate the NLL, which we
then backpropagate through in order to compute the diagonal Fisher elements.

• allowed_outputs (optional) – A list of indices, indicating which output neurons of the
main network should be taken into account when computing the log probability. If not spec-
ified, all output neurons are considered.

• custom_forward (optional) – A function handle that can replace the default procedure
of forwarding samples through the given network(s).

The default forward procedure if hnet is None is

Y = mnet.forward(X, weights=params)

Otherwise, the default forward procedure is

weights = hnet.forward(task_id, theta=params)
Y = mnet.forward(X, weights=weights)

The signature of this function should be as follows.

– hnet is None: @fun(mnet, params, X)

– hnet is not None: @fun(mnet, hnet, task_id, params, X)

where X denotes the input batch to the main network (usually consisting of a single sample).

174 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

Example

Imagine a situation where the main network uses context- dependent modulation (cmp.
utils.context_mod_layer.ContextModLayer) and the parameters of these context-
mod layers are produced by the hypernetwork hnet, whereas the remaining weights of the
main network mnet are maintained internally and passed as argument params to this method.

In particular, we look at a main network that is an instance of class mnets.mlp.MLP. The
forward pass through this combination of networks should be handled as follows in order to
compute the correct fisher matrix:

def custom_forward(mnet, hnet, task_id, params, X):
mod_weights = hnet.forward(task_id)
weights = {

'mod_weights': mod_weights,
'internal_weights': params

}
Y = mnet.forward(X, weights=weights)
return Y

• custom_nll (optional) – A function handle that can replace the default procedure of com-
puting the negative-log-likelihood (NLL), which is required to compute the Fisher.

The signature of this function should be as follows:
@fun(Y, T, data, allowed_outputs, empirical_fisher)

where Y are the outputs of the main network. Note, allowed_outputs have already been
applied to Y, if given. T is the target provided by the dataset data, transformed as follows:

T = data.output_to_torch_tensor(batch[1], device,
mode='inference')

The arguments data, allowed_outputs and empirical_fisher are only passed for con-
vinience (e.g., to apply simple sanity checks using assertions).

The output of the function handle should be the NLL for the given sample.

• pass_ids (bool) – If a custom_nll is used and this flag is True, then the signature of the
cutom_nll is expected to be:

@fun(Y, T, data, allowed_outputs, empirical_fisher, batch_ids)

where batch_ids are the unique identifiers as returned by option return_ids of method
data.dataset.Dataset.next_train_batch() corresponding to the provided samples.

Example

In sequential datasets, target sequences T might be padded to the same length. Though, if
the unpadded length should be used for NLL computation, then the custom_nll function
needs the ability to request this information (sequence length) from data.

Also, the signatures of custom_forward are expected to be different.

The signature of this function should be as follows.

– hnet is None: @fun(mnet, params, X, data, batch_ids)

– hnet is not None: @fun(mnet, hnet, task_id, params, X, data, batch_ids)

5.4. Elastic Weight Consolidation 175

https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• proper_scaling (bool) – The algorithm Online EWC is based on a Taylor approximation
of the posterior that leads to the following estimate

log 𝑝(𝜃 | 𝒟1, · · · ,𝒟𝑇) ≈ log 𝑝(𝒟𝑇 | 𝜃) − 1

2

∑︁
𝑖

(︂∑︁
𝑡<𝑇

𝑁𝑡ℱ𝑒𝑚𝑝 𝑡,𝑖 +
1

𝜎2
𝑝𝑟𝑖𝑜𝑟

)︂
(𝜃𝑖 − 𝜃*𝑆,𝑖)

2 + const

Due to the presentation of the algorithm in the paper and inspired by multiple publicly im-
plementations, we approximate the regularization strength in practice via∑︁

𝑡<𝑇

𝑁𝑡ℱ𝑒𝑚𝑝 𝑡,𝑖 +
1

𝜎2
𝑝𝑟𝑖𝑜𝑟

≈ 𝜆
∑︁
𝑡<𝑇

ℱ𝑒𝑚𝑝 𝑡,𝑖

where 𝜆 is a hyperparameter.

If this argument is True, then the sum of Fisher matrices is properly weighted by the dataset
size (independent of argument n_max).

• prior_strength (float or list, optional) – Either a scalar or a list of Tensors with
the same shapes as params. Only applies to Online EWC. One can specify an offset for all
Fisher values, e.g., 1

𝜎2
𝑝𝑟𝑖𝑜𝑟

. See argument proper_scaling for details.

• regression_lvar (float) – In regression, this refers to the variance of the likelihood.

• target_manipulator (func, optional) – A function with signature

T = target_manipulator(T)

That may manipulate the targets coming from the dataset.

hypnettorch.utils.ewc_regularizer.context_mod_forward(mod_weights=None)
Create a custom forward function for function compute_fisher().

See argument custom_forward of function compute_fisher() for more details.

This is a helper method to quickly retrieve a function handle that manages the forward pass for a context-
modulated main network.

We assume that the interface of the main network is similar to the one of mnets.mlp.MLP.forward().

Parameters
mod_weights (optional) – If provided, it is assumed that compute_fisher() is called with
hnet set to None. Hence, the returned function handle will have the given context-modulation
pattern hard-coded. If left unspecified, it is assumed that a hnet is passed to compute_fisher()
and that this hnet computes only the parameters of all context-mod layers.

Returns
A function handle.

hypnettorch.utils.ewc_regularizer.ewc_regularizer(task_id, params, mnet, hnet=None, online=False,
gamma=1.0)

Compute the EWC regularizer, that can be added to the remaining loss. Note, the hyperparameter, that trades-off
the regularization strength is not yet multiplied by the loss.

This loss assumes an appropriate use of the method “compute_fisher”. Note, for the current task “com-
pute_fisher” has to be called after calling this method.

If online is False, this method implements the loss proposed in eq. (3) in [EWC2017], except for the missing
hyperparameter lambda.

The online EWC implementation follows eq. (8) from [OnEWC2018] (note, that lambda does not appear in this
equation, but it was used in their experiments).

176 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

Parameters
(....) – See docstring of method compute_fisher().

Returns
EWC regularizer.

5.5 Helper functions for training Generative Adversarial Networks

A collection of helper functions that are useful and general for GAN training, e.g., several GAN losses.

hypnettorch.utils.gan_helpers.accuracy(logit_real, logit_fake, loss_choice)
The accuracy of the discriminator.

It is computed based on the assumption that values greater than a threshold are classified as real.

Note, the accuracy measure is only well defined for the Vanilla GAN. Though, we just look at generally pre-
ferred value ranges and generalize the concept of accuracy to the other GAN formulations using the following
thresholds:

• 0.5 for Vanilla GAN and Traditional LSGAN

• 0 for Pearson Chi^2 LSGAN and WGAN.

Parameters
(....) – See docstring of function dis_loss().

Returns
The relative accuracy of the discriminator.

hypnettorch.utils.gan_helpers.concat_mean_stats(inputs)
Add mean statistics to discriminator input.

GANs often run into mode collapse since the discriminator sees every sample in isolation. I.e., it cannot detect
whether all samples in a batch do look alike.

A simple way to allow the discriminator to have access to batch statistics is to simply concatenate the mean
(across batch dimension) of all discriminator samples to each sample.

Parameters
inputs – The input batch to the discriminator.

Returns
The modified input batch.

hypnettorch.utils.gan_helpers.dis_loss(logit_real, logit_fake, loss_choice)
Compute the loss for the discriminator.

Note, only the discriminator weights should be updated using this loss.

Parameters

• logit_real – Outputs of the discriminator after seeing real samples.

Note: We assume a linear output layer.

• logit_fake – Outputs of the discriminator after seeing fake samples.

5.5. Helper functions for training Generative Adversarial Networks 177

hypnettorch, Release 1.0

Note: We assume a linear output layer.

• loss_choice (int) – Define what loss function is used to train the GAN. Note, the choice
of loss function also influences how the output of the discriminator network if reinterpreted
or squashed (either between [0,1] or an arbitrary real number).

The following choices are available.

– 0: Vanilla GAN (Goodfellow et al., 2014). Non-saturating loss version. Note, we addi-
tionally apply one-sided label smoothing for this loss.

– 1: Traditional LSGAN (Mao et al., 2018). See eq. 14 of the paper. This loss corresponds
to a parameter choice 𝑎 = 0, 𝑏 = 1 and 𝑐 = 1.

– 2: Pearson Chi^2 LSGAN (Mao et al., 2018). See eq. 13. Parameter choice: 𝑎 = −1,
𝑏 = 1 and 𝑐 = 0.

– 3: Wasserstein GAN (Arjovski et al., 2017).

Returns
The discriminator loss.

hypnettorch.utils.gan_helpers.gen_loss(logit_fake, loss_choice)
Compute the loss for the generator.

Parameters
(....) – See docstring of function dis_loss().

Returns
The generator loss.

5.6 Hamiltonian-Monte-Carlo

The module utils.hmc implements the Hamiltonian-Monte-Carlo (HMC) algorithm as described in

Neal, MCMC using Hamiltonian dynamics, 2012.

The pseudocode of the algorithm is described in Figure 2 of the paper. The algorithm uses the Leapfrog algorithm to
simulate the Hamiltonian dynamics in discrete time. Therefore, two crucial hyperparameters are required: the stepsize
𝜖 and the number of steps 𝐿. Both hyperparameters have to be chosen with care and can drastically influence the
behavior of HMC. If the stepsize 𝜖 is too small, we don’t explore the state space efficiently and waste computation. If
it is too big, the numerical error from the discretization might be come too huge and the acceptance rate rather low. In
addition, we want to choose 𝐿 large enough to obtain good exploration, but if we set it too large we might loop back to
the starting position.

The No-U-Turn-Sampler (NUTS) has been proposed to set 𝐿 automatically, such that only the stepsize 𝜖 has to be
chosen.

Hoffman et al., “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo”,
2011.

This module provides implementations for both variants, basic HMC and NUTS. Multiple parallel chains can be simulated
via class MultiChainHMC. For Bayesian Neural Networks, the helper function nn_pot_energy() can be used to define
the potential energy.

Notation

178 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1206.1901
https://arxiv.org/abs/1111.4246

hypnettorch, Release 1.0

We largely follow the notation from Neal et al.. The variable of interest, e.g., model parameters, are encoded by the
position vector 𝑞. In addition, HMC requires a momentum 𝑝. The Hamiltonian 𝐻(𝑞, 𝑝) consists of two terms, the
potential energy 𝑈(𝑞) and the kinetic energy 𝐾(𝑝) = 𝑝𝑇𝑀−1𝑝/2 with 𝑀 being a symmetric, p.d. “mass” matrix.

The Hamiltonian dynamics can thus be summarized as

𝑑𝑞𝑖
𝑑𝑡

=
𝜕𝐻

𝜕𝑝𝑖
= [𝑀−1𝑝]𝑖

𝑑𝑝𝑖
𝑑𝑡

= −𝜕𝐻

𝜕𝑞𝑖
= −𝜕𝑈

𝜕𝑞𝑖

The Leapfrog algorithm is a way to discretize the differential equation above in a way that is reversible and volumne
preserving. The algorithm has two hyperparameters: the stepsize 𝜖 and the number of steps 𝐿. Below, we sketch the
algorithm to update momentum and position from time 𝑡 to time 𝑡 + 𝐿𝜖.

𝑝𝑖(𝑡 +
𝜖

2
) = 𝑝𝑖(𝑡) −

𝜖

2

𝜕𝑈

𝜕𝑞𝑖

(︀
𝑞(𝑡)

)︀
𝑞𝑖(𝑡 + 𝑙𝜖) = 𝑞𝑖(𝑡 + (𝑙 − 1)𝜖) + 𝜖

𝑝𝑖(𝑡 + (𝑙 − 1)𝜖 + 𝜖/2)

𝑚𝑖
∀𝑙 = 1..𝐿

𝑝𝑖(𝑡 + 𝑙𝜖 +
𝜖

2
) = 𝑝𝑖(𝑡 + (𝑙 − 1)𝜖 +

𝜖

2
) − 𝜖

𝜕𝑈

𝜕𝑞𝑖

(︀
𝑞(𝑡 + 𝑙𝜖)

)︀
∀𝑙 = 1..𝐿− 1

𝑝𝑖(𝑡 + 𝐿𝜖) = 𝑝𝑖(𝑡 + (𝐿− 1)𝜖 +
𝜖

2
) − 𝜖

2

𝜕𝑈

𝜕𝑞𝑖

(︀
𝑞(𝑡 + 𝐿𝜖)

)︀
We assume a diagonal mass matrix in the position update above.

hypnettorch.utils.hmc.HMC(initial_position, ...) This class represents the basic HMC algorithm.
hypnettorch.utils.hmc.MCMC(initial_position, ...) Implementation of the Metropolis-Hastings algorithm.
hypnettorch.utils.hmc.MultiChainHMC(...[, ...]) Wrapper for running multiple HMC chains in parallel.
hypnettorch.utils.hmc.NUTS(initial_position, ...) HMC with No U-Turn Sampler (NUTS).
hypnettorch.utils.hmc.leapfrog(position, ...) Implementation of the leapfrog algorithm.
hypnettorch.utils.hmc.
log_prob_standard_normal_prior(...)

Log-probability density of a standard normal prior.

hypnettorch.utils.hmc.nn_pot_energy(net, ...) The potential energy for Bayesian inference with HMC
using neural networks.

class hypnettorch.utils.hmc.HMC(initial_position, pot_energy_func, stepsize=0.02, num_steps=1,
inv_mass=1.0, logger=None, log_interval=100, writer=None,
writer_tag='')

Bases: object

This class represents the basic HMC algorithm.

The algorithm is implemented as outlined in Fig. 2 of Neal et al..

The potential energy should be the negative log probability density of the target distribution to sample from (up
to a constant) 𝑈(𝑞) = − log 𝑝(𝑞) + const..

Parameters

• initial_position (torch.Tensor) – The initial position 𝑞(0).

Note: The position variable should be provided as vector. The weights of a neural network
can be flattend via mnets.mnet_interface.MainNetInterface.flatten_params().

5.6. Hamiltonian-Monte-Carlo 179

https://arxiv.org/abs/1206.1901
https://docs.python.org/3/library/functions.html#object
https://arxiv.org/abs/1206.1901
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

• pot_energy_func (func) – A function handle computing the potential energy 𝑈(𝑞) upon
receiving a position 𝑞. To sample the weights of a neural network, the helper function
nn_pot_energy() can be used. To sample via HMC from a target distribution implemented
via torch.distributions.distribution.Distribution, one can define a function
handle as in the following example.

Example

d = MultivariateNormal(torch.zeros(4), torch.eye(4))
pot_energy_func = lambda q : - d.log_prob(q)

• stepsize (float) – The stepsize 𝜖 of the leapfrog() algorithm.

• num_steps (int) – The number of steps 𝐿 in the leapfrog() algorithm.

• inv_mass (float or torch.Tensor) – The inverse “mass” matrix as required for the
computation of the kinetic energy 𝐾(𝑝). See argument inv_mass of function leapfrog()
for details.

• logger (logging.Logger, optional) – If provided, the progress will be logged.

• log_interval (int) – After how many states the status should be logged.

• writer (tensorboardX.SummaryWriter, optional) – A tensorboard writer. If given,
useful simulation data will be logged, like the developement of the Hamiltonian.

• writer_tag (str) – Will be added to the tensorboard tags.

property acceptance_probability

The fraction of states that have been accepted.

Type
float

clear_position_trajectory(n=None)
Reset attribute position_trajectory.

This method will no affect the counter num_states.

Parameters
n (int, optional) – If provided, only the first n elements of position_trajectory are
discarded (e.g., the burn-in samples).

property current_position

The latest position 𝑞(𝑡) in the chain simulated so far.

Type
torch.Tensor

property num_states

The number of states in the chain visited so far.

The counter will be increased by method simulate_chain().

Type
int

property num_steps

The number of steps 𝐿 in the leapfrog() algorithm.

You may adapt the number of steps at any point.

180 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/distributions.html#torch.distributions.distribution.Distribution
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Type
int

property position_trajectory

A list containing all position variables (Markov states) visited so far.

New positions will be added by the method simulate_chain(). To decrease the memory footprint of
objects in this class, the trajectory can be cleared via method clear_position_trajectory().

Type
list

simulate_chain(n)
Simulate the next n states of the chain.

The new states will be appended to attribute position_trajectory.

Parameters
n (int) – Number of HMC steps to be executed.

property stepsize

The stepsize 𝜖 of the leapfrog() algorithm.

You may adapt the stepsize at any point.

Type
float

class hypnettorch.utils.hmc.MCMC(initial_position, pot_energy_func, proposal_std=1.0, logger=None,
log_interval=100, writer=None, writer_tag='')

Bases: object

Implementation of the Metropolis-Hastings algorithm.

This class implements the basic Metropolis-Hastings algorithm as, for instance, outlined here (see alg. 1).

The Metropolis-Hastings algorithm is a simple MCMC algorithm. In contrast to HMC, sampling is slow as posi-
tions follow a random walk. However, the algorithm does not need access to gradient information, which makes
it applicable to a wider range of applications.

We use a normal distribution𝒩 (𝑝, 𝜎2𝐼) as proposal, where 𝑝 denotes the previous position (sample point). Thus,
the proposal is symmetric, and cancels in the MH steps.

The potential energy is expected to be passed as negative log-probability (up to a constant), such that

𝜋(𝑝𝑡)

𝜋(𝑝𝑡−1)
∝ exp

{︀
𝑈(𝑝𝑡−1) − 𝑈(𝑝𝑡)

}︀
Parameters

• (....) – See docstring of class HMC.

• proposal_std (float) – The standard deviation 𝜎 of the proposal distribution 𝑝𝑡 ∼ 𝑞(𝑝 |
𝑝𝑡−1).

property acceptance_probability

The fraction of states that have been accepted.

Type
float

5.6. Hamiltonian-Monte-Carlo 181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://arxiv.org/abs/1504.01896
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

clear_position_trajectory(n=None)
Reset attribute position_trajectory.

This method will no affect the counter num_states.

Parameters
n (int, optional) – If provided, only the first n elements of position_trajectory are
discarded (e.g., the burn-in samples).

property current_position

The latest position 𝑞(𝑡) in the chain simulated so far.

Type
torch.Tensor

property num_states

The number of states in the chain visited so far.

The counter will be increased by method simulate_chain().

Type
int

property position_trajectory

A list containing all position variables (Markov states) visited so far.

New positions will be added by the method simulate_chain(). To decrease the memory footprint of
objects in this class, the trajectory can be cleared via method clear_position_trajectory().

Type
list

property proposal_std

The std 𝜎 of the proposal distribution.

Type
float

simulate_chain(n)
Simulate the next n states of the chain.

The new states will be appended to attribute position_trajectory.

Parameters
n (int) – Number of MCMC steps to be executed.

class hypnettorch.utils.hmc.MultiChainHMC(initial_positions, pot_energy_func, chain_type='hmc',
**kwargs)

Bases: object

Wrapper for running multiple HMC chains in parallel.

Samples obtained via an MCMC sampler are highly auto-correlated for two reasons: (1) the proposal distribution
is conditioned on the previous state and (2) because of rejection (consecutive states are identical). In addition, it
is unclear when the chain is long enough such that sufficient exploration has been taking place and the sample
(excluding initial burn-in) can be considered an i.i.d. sample from the target distribution. For this reason, it is
recommended to obtain an MCMC sample by running multiple chains in parrallel, starting from varying initial
postitions 𝑞(0).

This class provides a simple wrapper to instantiate multiple chains from HMC (and its subclasses) and provides
an interface to easily simulate those chains.

182 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

hypnettorch, Release 1.0

Parameters

• initial_positions (list or tuple) – A list of initial positions. The length of this list
will determine the number of chains to be instantiated. Each element is an initial position as
described for argument initial_position of class HMC.

• pot_energy_func (func) – See docstring of class HMC. One may also provide a list of func-
tions. For instance, if the potential energy of a Bayesian neural network should be computed,
there might be a runtime speedup if each function uses separate model instance.

• chain_type (str) – The of HMC algorithm to be used. The following options are available:

– 'hmc': Each chain will be an instance of class HMC.

– 'nuts': Each chain will be an instance of class NUTS.

• **kwargs – Keyword arguments that will be passed to the constructor when instantiating
each chain. The following particularities should be noted.

– If a writer object is passed, then a chain-specific identifier is added to the correspond-
ing writer_tag, except if writer is a string. In this case, we assume writer corre-
sponds to an output directory and we construct a separate object of class tensorboardX.
SummaryWriter per chain. In the latter case, the scalars logged across chains are all
shown within the same tensorboard plot and are therefore easier comparable.

– If a logger object is passed, then it will only be provided to the first chain. If a logger
should be passed to multiple chain instances, then a list of objects from class logging.
Logger is required. If entries in this list are None, then a simple console logger is gener-
ated for these entries that displays the chain’s identity when logging a message.

property avg_acceptance_probability

The average fraction of states that have been accepted across all chains.

Type
float

property chains

The list of internally managed HMC objects.

Type
list

property num_chains

The number of chains managed by this instance.

Type
int

simulate_chains(num_states, num_chains=-1, num_parallel=1)
Simulate the chains to gather a certain number of new positions.

This method simulates the internal chains to add num_states positions to each considered chain.

Parameters

• num_states (int) – Each considered chain will be simulated for this amount of HMC
steps (see argument n of method 𝐻𝑀𝐶.𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑐ℎ𝑎𝑖𝑛).

• num_chains (int or list) – The number of chains to be considered. If -1, then
all chains will be simulated for num_states steps. Otherwise, the num_chains chains
with the lowest number of states so far (according to attribute HMC.num_states) is sim-
ulated. Alternatively, one may specify a list of chain indices (numbers between 0 and
num_chains).

5.6. Hamiltonian-Monte-Carlo 183

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

• num_parallel (int) – How many chains should be simulated in parallel. If 1, the chains
are simulated consecutively (one after another).

class hypnettorch.utils.hmc.NUTS(initial_position, pot_energy_func, stepsize=0.02, delta_max=1000.0,
inv_mass=1.0, logger=None, log_interval=100, writer=None,
writer_tag='')

Bases: HMC

HMC with No U-Turn Sampler (NUTS).

In this class, we implement the efficient version of the NUTS algorithm (see algorithm 3 in Hoffman et al.).

NUTS eliminates the need to choose the number of Leapfrog steps 𝐿. While the algorithm is more compu-
tationally expensive than basic HMC, the reduced hyperparameter effort has been shown to reduce the overall
computational cost (and it requires less human intervention).

As explained in the paper, a good heuristic to set 𝐿 is to choose the highest number (for given 𝜖) before the
trajectory loops back to the initial position 𝑞0, e.g., when the following quantity becomes negative

𝑑

𝑑𝑡

1

2
‖𝑞 − 𝑞0‖22 = ⟨𝑞 − 𝑞0, 𝑝⟩

Note, this equation assumes the mass matrix is the identity: 𝑀 = 𝐼 .

However, this approach is in general not time reversible, therefore NUTS proposes a recursive agorithm that
allows backtracing. NUTS randomly adds subtrees to a balanced binary tree and stops when any of those subtrees
starts making a “U-turn” (either forward or backward in time). This tree construction is fully symmetric and
therefore reversible.

Note: The NUTS paper also proposes to combine a heuristic approach to adapt the stepsize 𝜖 together with 𝐿
(e.g., see algorithm 6 in Hoffman et al.).

Such stepsize adaptation is currently not implemented by this class!

Parameters

• (....) – See docstring of class HMC.

• delta_max (float) – The nonnegative criterion ∆max from Eq. 8 of Hoffman et al., that
should ensure that we stop NUTS if the energy becomes too big.

property num_steps

The attribute HMC.num_steps does not exist for class NUTS! Accessing this attribute will cause an error.

simulate_chain(n)
Simulate the next n states of the chain.

The new states will be appended to attribute position_trajectory.

Parameters
n (int) – Number of HMC steps to be executed.

hypnettorch.utils.hmc.leapfrog(position, momentum, stepsize, num_steps, inv_mass, pot_energy)
Implementation of the leapfrog algorithm.

The leapfrog algorithm updates position 𝑞 and momentum 𝑝 variables by simulating the Hamiltonian dynamics
in discrete time for a time window of size 𝐿𝜖, where 𝐿 is the number of leapfrog steps num_steps and 𝜖 is the
stepsize.

184 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1111.4246
https://arxiv.org/abs/1111.4246
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1111.4246
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

In general, one can call this method 𝐿 times while setting num_steps=1 in order to obtain the complete trajec-
tory. However, if not necessary, we recommend setting num_steps=L to save the unnecessary computation of
intermediate momentum variables.

Parameters

• position (torch.Tensor) – The position variable 𝑞.

• momentum (torch.Tensor) – The momentum variable 𝑝.

• stepsize (float) – The leapfrog stepsize 𝜖.

• num_steps (int) – The number of leapfrog steps 𝐿.

• inv_mass (float or torch.Tensor) – The inverse mass matrix 𝑀−1. Can also be pro-
vided as vector, in case of a diagonal mass matrix, or as scalar.

• pot_energy (func) – A function handle that computes the potential energy 𝑈
(︀
𝑞(𝑡)

)︀
, re-

ceiving as only input the current position variable.

Note: The function handle pot_energy has to be amenable to torch.autograd, as the
momentum update requires the partial derivatives of the potential energy.

Returns

Tuple containing:

• position (torch.Tensor): The updated position variable.

• momentum (torch.Tensor): The updated momentum variable.

Return type
(tuple)

hypnettorch.utils.hmc.log_prob_standard_normal_prior(position, mean=0.0, std=1.0)
Log-probability density of a standard normal prior.

This function can be used to compute log 𝑝(𝑞) for 𝑝(𝑞) = 𝒩 (𝑞;𝜇, 𝐼𝜎2), where 𝐼 denotes the identity matrix.

This function can be passed to nn_pot_energy() as argument prior_log_prob_func using, for instance:

lp_func = lambda q: log_prob_standard_normal_prior(q, mean=0., std=.02)

Parameters

• position (torch.Tensor) – The position variable 𝑞.

• mean (float or torch.Tensor) – The mean of the diagonal Gaussian prior.

• std (float or torch.Tensor) – The diagonal covariance of the Gaussian prior.

hypnettorch.utils.hmc.nn_pot_energy(net, inputs, targets, prior_log_prob_func, tau_pred=1.0,
nll_type='regression')

The potential energy for Bayesian inference with HMC using neural networks.

When obtaining samples from the posterior parameter distribution of a neural network via HMC, a potential
energy function has to be specified that allows evaluating the negative log-posterior up to a constant. We consider
a neural network with parameters 𝑊 which encodes a likelihood function 𝑝(𝑦 | 𝑊 ;𝑥) for an input 𝑥. In addition,

5.6. Hamiltonian-Monte-Carlo 185

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/torch.html#module-torch.autograd
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor

hypnettorch, Release 1.0

a prior 𝑝(𝑊) needs to be specified. Given a dataset 𝒟 consisting of inputs 𝑥𝑛 and targets 𝑦𝑛, we can specify
the potential energy as (note, here 𝑞 = 𝑊)

𝑈(𝑊) = − log 𝑝(𝒟 | 𝑊) − log 𝑝(𝑊)

= −
∑︁
𝑛

log 𝑝(𝑦𝑛 | 𝑊 ;𝑥𝑛) − log 𝑝(𝑊)

where the first term corresponds to the negative log-likelihood (NLL). The precise way of computing the NLL
depends on which kind of likelihood interpretation is forced onto the network (cf. argument nll_type).

Parameters

• net (mnets.mnet_interface.MainNetInterface) – The considered neural network,
whose parameters are 𝑊 .

• inputs (torch.Tensor) – A tensor containing all the input sample points 𝑥𝑛 in 𝒟.

• targets (torch.Tensor) – A tensor containing all the output sample points 𝑦𝑛 in 𝒟.

• prior_log_prob_func (func) – Function handle that allows computing the log-
probability density of the prior for a given position variate.

• tau_pred (float) – Only applies to nll_type='regression'. The inverse variance of
the assumed Gaussian likelihood.

• nll_type (str) – The type of likelihood interpretation enforced on the network. The fol-
lowing options are supported:

– 'regression': The network outputs the mean of a 1D normal distribution with fixed
variance.

NLL =
1

2𝜎2
ll

∑︁
(𝑥,𝑦)∈𝒟

(︀
𝑓M(𝑥,𝑊) − 𝑦

)︀2
where 𝑓M(𝑥,𝑊) is the network output and 1

𝜎2
ll

corresponds to tau_pred.

– 'classification': Multi-class classification with a softmax likelihood. Note, we as-
sume the network has linear (logit) outputs

NLL =
∑︁

(x,𝑦)∈𝒟

(︂
−

𝐶−1∑︁
𝑐=0

[𝑐 = 𝑦] log
(︁

softmax
(︀
𝑓M(x,𝑊)

)︀
𝑐⏟ ⏞

cross-entropy loss with 1-hot targets

)︁)︂

where 𝐶 is the number of classes and 𝑦 are integer labels. We assume that the neural
network 𝑓M(x,𝑊) outputs logits.

Note: We assume targets contains integer labels and not 1-hot encodings for
'classification'!

Returns
A function handle as required by constructor argument pot_energy_func of class HMC.

Return type
(func)

186 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

hypnettorch, Release 1.0

5.7 Hypernetwork Regularization

We summarize our own regularizers in this module. These regularizer ensure that the output of a hypernetwork don’t
change.

hypnettorch.utils.hnet_regularizer.calc_fix_target_reg(hnet, task_id, targets=None, dTheta=None,
dTembs=None, mnet=None,
inds_of_out_heads=None,
fisher_estimates=None, prev_theta=None,
prev_task_embs=None, batch_size=None,
reg_scaling=None)

This regularizer simply restricts the output-mapping for previous task embeddings. I.e., for all 𝑗 < task_id
minimize:

‖target𝑗 − ℎ(𝑐𝑗 , 𝜃 + ∆𝜃)‖2

where 𝑐𝑗 is the current task embedding for task 𝑗 (and we assumed that dTheta was passed).

Parameters

• hnet – The hypernetwork whose output should be regularized; has to implement the interface
hnets.hnet_interface.HyperNetInterface.

• task_id (int) – The ID of the current task (the one that is used to compute dTheta).

• targets (list) – A list of outputs of the hypernetwork. Each list entry must have the out-
put shape as returned by the hnets.hnet_interface.HyperNetInterface.forward()
method of the hnet. Note, this function doesn’t detach targets. If desired, that should be
done before calling this function.

Also see get_current_targets().

• dTheta (list, optional) – The current direction of weight change for the internal (un-
conditional) weights of the hypernetwork evaluated on the task-specific loss, i.e., the weight
change that would be applied to the unconditional parameters 𝜃. This regularizer aims to
modify this direction, such that the hypernet output for embeddings of previous tasks re-
mains unaffected. Note, this function does not detach dTheta. It is up to the user to decide
whether dTheta should be a constant vector or might depend on parameters of the hypernet.

Also see utils.optim_step.calc_delta_theta().

• dTembs (list, optional) – The current direction of weight change for the task embed-
dings of all tasks that have been learned already. See dTheta for details.

• mnet – Instance of the main network. Has to be provided if inds_of_out_heads are spec-
ified.

• inds_of_out_heads – (list, optional): List of lists of integers, denoting which output neu-
rons of the main network are used for predictions of the corresponding previous tasks. This
will ensure that only weights of output neurons involved in solving a task are regularized.

If provided, the method mnets.mnet_interface.MainNetInterface.
get_output_weight_mask of the main network ``mnet`() is used to determine
which hypernetwork outputs require regularization.

• fisher_estimates (list, optional) – A list of list of tensors, containing estimates of
the Fisher Information matrix for each weight tensor in the main network and each task. Note,
that len(fisher_estimates) == task_id. The Fisher estimates are used as importance
weights for single weights when computing the regularizer.

5.7. Hypernetwork Regularization 187

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

• prev_theta (list, optional) – If given, prev_task_embs but not targets has to be
specified. prev_theta is expected to be the internal unconditional weights 𝑡ℎ𝑒𝑡𝑎 prior to
learning the current task. Hence, it can be used to compute the targets on the fly (which
is more memory efficient (constant memory), but more computationally demanding). The
computed targets will be detached from the computational graph. Independent of the current
hypernet mode, the targets are computed in eval mode.

• prev_task_embs (list, optional) – If given, prev_theta but not targets has to be
specified. prev_task_embs are the task embeddings (conditional parameters) of the hyper-
network. See docstring of prev_theta for more details.

• batch_size (int, optional) – If specified, only a random subset of previous tasks is
regularized. If the given number is bigger than the number of previous tasks, all previous
tasks are regularized.

Note: A batch_size smaller or equal to zero will be ignored rather than throwing an error.

• reg_scaling (list, optional) – If specified, the regulariation terms for the different
tasks are scaled arcording to the entries of this list.

Returns
The value of the regularizer.

hypnettorch.utils.hnet_regularizer.flatten_and_remove_out_heads(mnet, weights, allowed_outputs)
Flatten a list of target network tensors to a single vector, such that output neurons that belong to other than the
current output head are dropped.

Note, this method assumes that the main network has a fully-connected output layer.

Parameters

• mnet – Main network instance.

• weights – A list of weight tensors of the main network (must adhere the corresponding
weight shapes).

• allowed_outputs – List of integers, denoting which output neurons of the fully-connected
output layer belong to the current head.

Returns
The flattened weights with those output weights not belonging to the current head being removed.

hypnettorch.utils.hnet_regularizer.get_current_targets(task_id, hnet)
For all 𝑗 < task_id, compute the output of the hypernetwork. This output will be detached from the graph before
being added to the return list of this function.

Note, if these targets don’t change during training, it would be more memory efficient to store the weights 𝜃* of
the hypernetwork (which is a fixed amount of memory compared to the variable number of tasks). Though, it is
more computationally expensive to recompute ℎ(𝑐𝑗 , 𝜃

*) for all 𝑗 < task_id everytime the target is needed.

Note, this function sets the hypernet temporarily in eval mode. No gradients are computed.

See argument targets of calc_fix_target_reg() for a use-case of this function.

Parameters

• task_id (int) – The ID of the current task.

• hnet – An instance of the hypernetwork before learning a new task (i.e., the hypernetwork
has the weights 𝜃* necessary to compute the targets).

188 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

Returns
An empty list, if task_id is 0. Otherwise, a list of task_id-1 targets. These targets can be
passed to the function calc_fix_target_reg() while training on the new task.

5.8 Helper functions for weight initialization

The module utils.init_utils contains helper functions that might be useful for initialization of weights. The
functions are somewhat complementary to what is already provided in the PyTorch module torch.nn.init.

hypnettorch.utils.init_utils.calc_fan_in_and_out(shapes)
Calculate fan-in and fan-out.

Note: This function expects the shapes of an at least 2D tensor.

Parameters
shapes (list) – List of integers.

Returns

• fan_in

• fan_out

Return type
(tuple) Tuple containing

hypnettorch.utils.init_utils.xavier_fan_in_(tensor)
Initialize the given weight tensor with Xavier fan-in init.

Unfortunately, torch.nn.init.xavier_uniform_() doesn’t give us the choice to use fan-in init (always uses
the harmonic mean). Therefore, we provide our own implementation.

Parameters
tensor (torch.Tensor) – Weight tensor that will be modified (initialized) in-place.

5.9 2D-convolutional layer without weight sharing

This module implements a biologically-plausible version of a convolutional layer that does not use weight-sharing.
Such a convnet is termed “locally-connected network” in:

Bartunov et al., “Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Ar-
chitectures”, NeurIPS 2018.

hypnettorch.utils.local_conv2d_layer.
LocalConv2dLayer(...)

Implementation of a locally-connected 2D convolutional
layer.

class hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer(in_channels, out_channels, in_height,
in_width, kernel_size, stride=1,
padding=0, bias=True,
no_weights=False)

5.8. Helper functions for weight initialization 189

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/nn.init.html#torch.nn.init.xavier_uniform_
https://pytorch.org/docs/master/tensors.html#torch.Tensor
http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures
http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures

hypnettorch, Release 1.0

Bases: Module

Implementation of a locally-connected 2D convolutional layer.

Since this implementation of a convolutional layer doesn’t use weight- sharing, it will have more parameters than
a conventional convolutional layer such as torch.nn.Conv2d.

For example, consider a convolutional layer with kernel size [K, K], C_in input channels and C_out output
channels, that has an output feature map size of [H, W]. Each receptive field2 will have its own weights, a
parameter tensor of size K x K. Thus, in total the layer will have C_out * C_in * H * W * K * K weights
compared to C_out * C_in * K * K weights that a conventional torch.nn.Conv2d would have.

Consider the 𝑖-th input feature map 𝐹 (𝑖) (1 ≤ 𝑖 ≤ 𝐶in), the 𝑗-th output feature map 𝐺(𝑗) (1 ≤ 𝑗 ≤ 𝐶out) and the
pixel with coordinates (𝑥, 𝑦) in the 𝑗-th output feature map 𝐺

(𝑗)
𝑥𝑦 (1 ≤ 𝑥 ≤ 𝑊 and 1 ≤ 𝑦 ≤ 𝐻).

We denote the filter weights of this pixel connecting to the 𝑖-th input feature map by 𝑊
(𝑖,𝑗)
𝑥𝑦 ∈ R𝐾×𝐾 . The

corresponding receptive field inside 𝐹 (𝑖) that is used to compute pixel 𝐺(𝑗)
𝑥𝑦 is denoted by 𝐹 (𝑖)(𝑥, 𝑦) ∈ R𝐾×𝐾 .

The bias weights for feature map 𝐺(𝑗) are denoted by 𝐵(𝑗), with a scalar weight 𝐵(𝑗)
𝑥𝑦 for pixel (𝑥, 𝑦).

Using this notation, the computation of this layer can be described by the following formula

𝐺(𝑗)
𝑥𝑦 = 𝐵(𝑗)

𝑥𝑦 +

𝐶in∑︁
𝑖=1

sum(𝑊 (𝑖,𝑗)
𝑥𝑦 ⊙ 𝐹 (𝑖)(𝑥, 𝑦))

= 𝐵(𝑗)
𝑥𝑦 +

𝐶in∑︁
𝑖=1

⟨𝑊 (𝑖,𝑗)
𝑥𝑦 , 𝐹 (𝑖)(𝑥, 𝑦)⟩𝐹

where sum(·) is the unary operator that computes the sum of all elements in a matrix, ⊙ denotes the Hadamard
product and ⟨·, ·⟩𝐹 denotes the Frobenius inner product, which computes the sum of the entries of the Hadamard
product between real-valued matrices.

Implementation details

Let 𝑁 denote the batch size. We can use the function torch.nn.functional.unfold() to split our input,
which is of shape [N, C_in, H_in, W_in], into receptive fields F_hat of dimension [N, C_in * K * K,
H * W]. The receptive field 𝐹 (𝑖)(𝑥, 𝑦) would then correspond to F_hat[:, i * K*K:(i+1) * K*K, y*H
+ x], assuming that indices now start at 0 and not at 1.

In addition, we have a weight tensor W of shape [C_out, C_in * K * K, H * W].

Now, we can compute the element-wise product of receptive fields and their filters by introducing a slack dimen-
sion into the shape of F_hat (i.e., [N, 1, C_in * K * K, H * W]) and by using broadcasting. F_hat * W
will result into a tensor of shape [N, C_out, C_in * K * K, H * W]. By summing over the third dimension
dim=2 and reshaping the output we retrieve the result of our local convolutional layer.

Parameters

• in_channels (int) – Number of channels in the input image.

• out_channels (int) – Number of channels produced by the convolution.

• in_height (int) – Height of the input feature maps, assuming that input feature maps have
shape [C_in, H, W] (omitting the batch dimension). This argument is necessary to com-
pute the size of output feature maps, as we need a filter for each pixel in each output feature
map.

• in_width (int) – Width of input feature maps.
2 For each of the C_in input feature maps, there is one receptive field for each pixel in all C_out feature maps.

190 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
https://pytorch.org/docs/master/generated/torch.nn.functional.unfold.html#torch.nn.functional.unfold
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

hypnettorch, Release 1.0

• kernel_size (int or tuple) – Size of the convolving kernel.

• stride (int or tuple, optional) – Stride of the convolution.

• padding (int or tuple, optional) – Zero-padding added to both sides of the input.

• bias (bool, optional) – If True, adds a learnable bias to the output. There will be one
scalar bias per filter.

• no_weights (bool) – If True, the layer will have no trainable weights. Hence, weights are
expected to be passed to the forward() method.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x, weights=None)
Compute output of local convolutional layer.

Parameters

• x – The input images of shape [N, C_in, H_in, W_in], where N denotes the batch size..

• weights – Weights that should be used instead of the internally maintained once (deter-
mined by attribute weights). Note, if no_weights was True in the constructor, then this
parameter is mandatory.

Returns
The output feature maps of shape [N, C_out, H, W].

property out_height

Height of the output feature maps.

Type
int

property out_width

Width of the output feature maps.

Type
int

property param_shapes

A list of list of integers. Each list represents the shape of a parameter tensor. Note, this attribute is indepen-
dent of the attribute weights, it always comprises the shapes of all weight tensors as if the network would
be stand-alone (i.e., no weights being passed to the forward() method).

Type
list

training: bool

property weights

A list of all internal weights of this layer. If all weights are assumed to be generated externally, then this
attribute will be None.

Type
torch.nn.ParameterList or None

5.9. 2D-convolutional layer without weight sharing 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList

hypnettorch, Release 1.0

5.10 Console/file logging

Collection of methods used to setup and maintain the logger used by this framework.

hypnettorch.utils.logger_config.config_logger(name, log_file, file_level, console_level)
Configure the logger that should be used by all modules in this package. This method sets up a logger, such that
all messages are written to console and to an extra logging file. Both outputs will be the same, except that a
message logged to file contains the module name, where the message comes from.

The implementation is based on an earlier implementation of a function I used in another project:

https://git.io/fNDZJ

Parameters

• name – The name of the created logger.

• log_file – Path of the log file. If None, no logfile will be generated. If the logfile already
exists, it will be overwritten.

• file_level – Log level for logging to log file.

• console_level – Log level for logging to console.

Returns
The configured logger.

5.11 Miscellaneous Utilities

A collection of helper functions.

hypnettorch.utils.misc.configure_matplotlib_params(fig_size=[6.4, 4.8], two_axes=True, font_size=8,
usetex=False)

Helper function to configure default matplotlib parameters.

Parameters

• fig_size – Figure size (width, height) in inches.

• usetex (bool) – Whether text.usetex should be set (leads to an error on systems that
don’t have latex installed).

hypnettorch.utils.misc.get_colorbrewer2_colors(family='Set2')
Helper function that returns a list of color combinations extracted from colorbrewer2.org.

Parameters
(list) – the color family from colorbrewer2.org to use.

hypnettorch.utils.misc.get_default_args(func)
Get the default values of all keyword arguments for a given function.

Parameters
func – A function handle.

Returns
Dictionary with keyword argument names as keys and their default value as values.

Return type
(dict)

192 Chapter 5. Utilities and helper functions

https://git.io/fNDZJ
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

hypnettorch, Release 1.0

hypnettorch.utils.misc.init_params(weights, bias=None)
Initialize the weights and biases of a linear or (transpose) conv layer.

Note, the implementation is based on the method “reset_parameters()”, that defines the original PyTorch initial-
ization for a linear or convolutional layer, resp. The implementations can be found here:

https://git.io/fhnxV

https://git.io/fhnx2

Deprecated since version 1.0: Please use function utils.torch_utils.init_params() instead.

Parameters

• weights – The weight tensor to be initialized.

• bias (optional) – The bias tensor to be initialized.

hypnettorch.utils.misc.list_to_str(list_arg, delim=' ')
Convert a list of numbers into a string.

Parameters

• list_arg – List of numbers.

• delim (optional) – Delimiter between numbers.

Returns
List converted to string.

Return type
(str)

hypnettorch.utils.misc.repair_canvas_and_show_fig(fig, close=True)
If writing a figure to tensorboard via “add_figure” it might change the canvas, such that our backend doesn’t
allow to show the figure anymore. This method will generate a new canvas and replace the old one of the given
figure.

Parameters

• fig – The figure to be shown.

• close – Whether the figure should be closed after it has been shown.

hypnettorch.utils.misc.str_to_act(act_str)
Convert the name of an activation function into the actual PyTorch activation function.

Parameters
act_str – Name of activation function (as defined by command-line arguments).

Returns
Torch activation function instance or None, if linear is given.

hypnettorch.utils.misc.str_to_floats(str_arg)
Helper function to convert a string which is a list of comma separated floats into an actual list of floats.

Parameters
str_arg – String containing list of comma-separated floats. For convenience reasons, we allow
the user to also pass single float that a put into a list of length 1 by this function.

Returns
List of floats.

Return type
(list)

5.11. Miscellaneous Utilities 193

https://git.io/fhnxV
https://git.io/fhnx2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

hypnettorch.utils.misc.str_to_ints(str_arg)
Helper function to convert a string which is a list of comma separated integers into an actual list of integers.

Parameters
str_arg – String containing list of comma-separated ints. For convenience reasons, we allow
the user to also pass single integers that a put into a list of length 1 by this function.

Returns
List of integers.

Return type
(list)

5.12 Compute Parameter Changes without Update Steps

PyTorch optimizers don’t provide the ability to get a lookahead of the change to the parameters applied by the torch.
optim.Optimizer.step() method. Therefore, this module copies step() functions from some optimizers, but
without applying the weight change and without making changes to the internal state of an optimizer, such that the user
can get the change of parameters that would be executed by the optimizer.

hypnettorch.utils.optim_step.adam_step(optimizer, detach_dp=True)
Performs a single optimization step using the Adam optimizer. The code has been copied from:

https://git.io/fjYP3

Note, this function does not change the inner state of the given optimizer object.

Note, gradients are cloned and detached by default.

Parameters

• optimizer – An instance of class torch.optim.Adam.

• detach_dp – Whether gradients are detached from the computational graph. Note, False
only makes sense if func:torch.autograd.backward was called with the argument cre-
ate_graph set to True.

Returns
A list of gradient changes d_p that would be applied by this optimizer to all parameters when
calling torch.optim.Adam.step().

hypnettorch.utils.optim_step.calc_delta_theta(optimizer, use_sgd_change, lr=None, detach_dt=True)
Calculate ∆𝜃, i.e., the change in trainable parameters (𝜃) in order to minimize the task-specific loss.

Note, one has to call torch.autograd.backward() on a desired loss before calling this function, otherwise
there are no gradients to compute the weight change that the optimizer would cause. Hence, this method is called
in between torch.autograd.backward() and torch.optim.Optimizer.step().

Note, by default, gradients are detached from the computational graph.

Parameters

• optimizer – The optimizer that will be used to change 𝜃.

• use_sgd_change – If True, then we won’t calculate the actual step done by the current
optimizer, but the one that would be done by a simple SGD optimizer.

• lr – Has to be specified if use_sgd_change is True. The learning rate if the optimizer.

194 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step
https://pytorch.org/docs/master/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step
https://git.io/fjYP3
https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward
https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward
https://pytorch.org/docs/master/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step

hypnettorch, Release 1.0

• detach_dt – Whether ∆𝜃 should be detached from the computational graph. Note, in or-
der to backprop through ∆𝜃, you have to call torch.autograd.backward() with cre-
ate_graph set to True before calling this method.

Returns
∆𝜃

hypnettorch.utils.optim_step.rmsprop_step(optimizer, detach_dp=True)
Performs a single optimization step using the RMSprop optimizer. The code has been copied from:

https://git.io/fjurp

Note, this function does not change the inner state of the given optimizer object.

Note, gradients are cloned and detached by default.

Parameters

• optimizer – An instance of class torch.optim.Adam.

• detach_dp – Whether gradients are detached from the computational graph. Note, False
only makes sense if func:torch.autograd.backward was called with the argument cre-
ate_graph set to True.

Returns
A list of gradient changes d_p that would be applied by this optimizer to all parameters when
calling torch.optim.RMSprop.step().

hypnettorch.utils.optim_step.sgd_step(optimizer, detach_dp=True)
Performs a single optimization step using the SGD optimizer. The code has been copied from:

https://git.io/fjYit

Note, this function does not change the inner state of the given optimizer object.

Note, gradients are cloned and detached by default.

Parameters

• optimizer – An instance of class torch.optim.SGD.

• detach_dp – Whether gradients are detached from the computational graph. Note, False
only makes sense if func:torch.autograd.backward was called with the argument cre-
ate_graph set to True.

Returns
A list of gradient changes d_p that would be applied by this optimizer to all parameters when
calling torch.optim.SGD.step().

5.13 Self-Attention Layer

This function was copied from

https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py

It was written by Cheonbok Park. Unfortunately, no license was visibly provided with this code.

Note, that we use this code WITHOUT ANY WARRANTIES.

The code was slightly modified to fit our purposes.

5.13. Self-Attention Layer 195

https://pytorch.org/docs/master/generated/torch.autograd.backward.html#torch.autograd.backward
https://git.io/fjurp
https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam
https://git.io/fjYit
https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD
https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py

hypnettorch, Release 1.0

class hypnettorch.utils.self_attention_layer.SelfAttnLayer(in_dim, use_spectral_norm)

Bases: Module

Self-Attention Layer

This type of layer was proposed by:

Zhang et al., “Self-Attention Generative Adversarial Networks”, 2018 https://arxiv.org/abs/1805.
08318

The goal is to capture global correlations in convolutional networks (such as generators and discriminators in
GANs).

Initialize self-attention layer.

Parameters

• in_dim – Number of input channels (C).

• use_spectral_norm – Enable spectral normalization for all 1x1 conv. layers.

forward(x, ret_attention=False)
Compute and apply attention map to mix global information into local features.

Parameters

• x – Input feature maps (shape: B x C x W x H).

• ret_attention (optional) – If the attention map should be returned as an additional
return value.

Returns

Tuple (if ret_attention is True) containing:

• out: gamma * (self-)attention features + input features.

• attention: Attention map, shape: B X N X N (N = W * H).

Return type
(tuple)

training: bool

class hypnettorch.utils.self_attention_layer.SelfAttnLayerV2(in_dim, use_spectral_norm,
no_weights=False,
init_weights=None)

Bases: Module

Self-Attention Layer with weights maintained separately. Hence, this class should have the exact same behavior
as “SelfAttnLayer” but the weights are maintained independent of the preimplemented PyTorch modules, which
allows more flexibility (e.g., generating weights by a hypernet or modifying weights easily).

This type of layer was proposed by:

Zhang et al., “Self-Attention Generative Adversarial Networks”, 2018 https://arxiv.org/abs/1805.
08318

The goal is to capture global correlations in convolutional networks (such as generators and discriminators in
GANs).

Initialize self-attention layer.

Parameters

• in_dim – Number of input channels (C).

196 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318

hypnettorch, Release 1.0

• use_spectral_norm – Enable spectral normalization for all 1x1 conv. layers.

• no_weights – If set to True, no trainable parameters will be constructed, i.e., weights are
assumed to be produced ad-hoc by a hypernetwork and passed to the forward function.

• init_weights (optional) – This option is for convinience reasons. The option expects a
list of parameter values that are used to initialize the network weights. As such, it provides a
convinient way of initializing a network with a weight draw produced by the hypernetwork.
See attribute “weight_shapes” for the format in which parameters should be passed.

forward(x, ret_attention=False, weights=None, dWeights=None)
Compute and apply attention map to mix global information into local features.

Parameters

• x – Input feature maps (shape: B x C x W x H).

• ret_attention (optional) – If the attention map should be returned as an additional
return value.

• weights – List of weight tensors, that are used as layer parameters. If “no_weights” was
set in the constructor, then this parameter is mandatory. Note, when provided, internal
parameters are not used.

• dWeights – List of weight tensors, that are added to “weights” (the internal list of pa-
rameters or the one given via the option “weights”), when computing the output of this
network.

Returns

Tuple (if ret_attention is True) containing:

• out: gamma * (self-)attention features + input features.

• attention: Attention map, shape: B X N X N (N = W * H).

Return type
(tuple)

training: bool

property weight_shapes

The shapes of all parameter tensors in this layer (value of attribute is independent of whether “no_weights”
was set in the constructor).

Type
list

property weights

A list of parameter tensors (all parameters in this layer). Will be None if this network has no weights.

Type
torch.nn.ParameterList or None

5.13. Self-Attention Layer 197

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.nn.ParameterList.html#torch.nn.ParameterList

hypnettorch, Release 1.0

5.14 Synaptic Intelligence

The module utils.si_regularizer implements the Synaptic Intelligence (SI) regularizer proposed in

Zenke et al., “Continual Learning Through Synaptic Intelligence”, 2017. https://arxiv.org/abs/1703.04200

Note: We aim to follow the suggested implementation from appendix section A.2.3 in

van de Ven et al., “Three scenarios for continual learning”, 2019. https://arxiv.org/pdf/1904.07734.pdf

We additionally ensure that importance weights Ω are positive.

Note: This implementation has the following memory requirements. Let 𝑛 denote the number of parameters to be
regularized.

We always need to store the importance weights Ω and the checkpointed weights after learning the last task 𝜃prev.

We also need to checkpoint the weights right before the optimizer step is performed 𝜃pre_step in order to update the
running importance estimate 𝜔.

Hence, we keep an additional memory of 4𝑛.

hypnettorch.utils.si_regularizer.
si_pre_optim_step(...)

Prepare SI importance estimate before running the opti-
mizer step.

hypnettorch.utils.si_regularizer.
si_post_optim_step(...)

Update running importance estimate 𝜔.

hypnettorch.utils.si_regularizer.
si_compute_importance(...)

Compute weight importance Ω after training a task.

hypnettorch.utils.si_regularizer.
si_regularizer(...)

Apply synaptic intelligence regularizer.

hypnettorch.utils.si_regularizer.si_compute_importance(net, params, params_name=None,
epsilon=0.001)

Compute weight importance Ω after training a task.

Note: This function is assumed to be called after the training on the current task finished. It will set the variable
𝜃prev to the current parameter value.

Parameters

• (....) – See docstring of function si_pre_optim_step().

• epsilon (float) – Damping parameter used to ensure numerical stability when normaliz-
ing weight importance.

hypnettorch.utils.si_regularizer.si_post_optim_step(net, params, params_name=None,
delta_params=None)

Update running importance estimate 𝜔.

This function is called after an optimizer update step has been performed. It will perform an update of the internal
running variable :math:omega` using the current parameter values, the checkpointed parameter values before the

198 Chapter 5. Utilities and helper functions

https://arxiv.org/abs/1703.04200
https://arxiv.org/pdf/1904.07734.pdf
https://docs.python.org/3/library/functions.html#float

hypnettorch, Release 1.0

optimizer step (𝜃pre_step, see function si_pre_optim_step()) and the negative gradients accumulated in the
grad variables of the parameters.

Parameters

• (....) – See docstring of function si_pre_optim_step().

• delta_params (list) – One may pass the parameter update step directly. In this case. the
difference between the current parameter values and the previous ones 𝜃pre_step will not be
computed.

Note: One may use the functions provided in module utils.optim_step to calculate
delta_params

Note: When this option is used, it is not required to explicitly call the optimizer its step
function. Though, it is still required that gradients are computed and accumulated in the
grad variables of the parameters in params.

Note: This option is particularly interesting if importances should only be estimated wrt to
a part of the total loss function, e.g., the task-specific part, ignoring other parts of the loss
(e.g., regularizers).

hypnettorch.utils.si_regularizer.si_pre_optim_step(net, params, params_name=None,
no_pre_step_ckpt=False)

Prepare SI importance estimate before running the optimizer step.

This function has to be called before running the optimizer step in order to checkpoint 𝜃pre_step.

Note: When this function is called the first time (for the first task), the given parameters will also be checkpointed
as the initial weights, which are required to normalize importances :math:Omega` after training.

Parameters

• net (torch.nn.Module) – A network required to store buffers (i.e., the running variables
that SI needs to keep track of).

• params (list) – A list of parameter tensors. For each parameter tensor in this list that
requires_grad the importances will be measured.

• params_name (str, optional) – In case SI should be performed for multiple parameter
groups params, one has to assign names to each group via this option.

• no_pre_step_ckpt (bool) – If True, then this function will not checkpoint 𝜃pre_step. In-
stead, option delta_params of function si_post_optim_step() is expected to be set.

Note: One still has to call this function once before updating the parameters of the first task
for the first time.

5.14. Synaptic Intelligence 199

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

hypnettorch.utils.si_regularizer.si_regularizer(net, params, params_name=None)
Apply synaptic intelligence regularizer.

This function computes the SI regularizer. Note, a regularization strength should be multiplied by the returned
loss post-hoc, to tune the strength.

Parameters
(....) – See docstring of function si_pre_optim_step().

Returns
The regularizer as scalar value.

Return type
(torch.Tensor)

5.15 General helper functions for simulations

The module utils.sim_utils comprises a bunch of functions that are in general useful for writing simulations in
this repository.

hypnettorch.utils.sim_utils.calc_train_iter(num_train_samples, batch_size, num_iter=-1, epochs=-1)
Calculate the number of training tierations.

If epochs is specified, this method will compute the total number of training iterations and the number of
iterations per epoch.

Otherwise, the number of training iterations is simply set to num_iter.

Parameters

• num_train_samples (int) – Numbe rof training samples in dataset.

• batch_size (int) – Mini-batch size during training.

• num_iter (int) – Number of training iterations. Only needs to be specified if epochs is
-1.

• epochs (int, optional) – Number of training epochs.

Returns

Tuple containing:

• num_train_iter: Total number of training iterations.

• iter_per_epoch: Number of training iterations per epoch. Is set to -1 in case epochs is
unspecified.

Return type
(tuple)

hypnettorch.utils.sim_utils.get_hypernet(config, device, net_type, target_shapes, num_conds,
no_cond_weights=False, no_uncond_weights=False,
uncond_in_size=0, shmlp_chunk_shapes=None,
shmlp_num_per_chunk=None, shmlp_assembly_fct=None,
verbose=True, cprefix=None)

Generate a hypernetwork instance.

A helper to generate the hypernetwork according to the given the user configurations.

Parameters

200 Chapter 5. Utilities and helper functions

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

• config (argparse.Namespace) – Command-line arguments.

Note: The function expects command-line arguments available according to the function
utils.cli_args.hnet_args().

• device – PyTorch device.

• net_type (str) – The type of network. The following options are available:

– 'hmlp'

– 'chunked_hmlp'

– 'structured_hmlp'

– 'hdeconv'

– 'chunked_hdeconv'

• target_shapes (list) – See argument target_shapes of hnets.mlp_hnet.HMLP.

• num_conds (int) – Number of conditions that should be known to the hypernetwork.

• no_cond_weights (bool) – See argument no_cond_weights of hnets.mlp_hnet.
HMLP.

• no_uncond_weights (bool) – See argument no_uncond_weights of hnets.mlp_hnet.
HMLP.

• uncond_in_size (int) – See argument uncond_in_size of hnets.mlp_hnet.HMLP.

• shmlp_chunk_shapes (list, optional) – Argument chunk_shapes of hnets.
structured_mlp_hnet.StructuredHMLP.

• shmlp_num_per_chunk (list, optional) – Argument num_per_chunk of hnets.
structured_mlp_hnet.StructuredHMLP.

• shmlp_assembly_fct (func, optional) – Argument assembly_fct of hnets.
structured_mlp_hnet.StructuredHMLP.

• verbose (bool) – Argument verbose of hnets.mlp_hnet.HMLP.

• cprefix (str, optional) – A prefix of the config names. It might be, that the config
names used in this function are prefixed, since several hypernetworks should be generated.

Also see docstring of parameter prefix in function utils.cli_args.hnet_args().

hypnettorch.utils.sim_utils.get_mnet_model(config, net_type, in_shape, out_shape, device, cprefix=None,
no_weights=False, **mnet_kwargs)

Generate a main network instance.

A helper to generate a main network according to the given the user configurations.

Note: Generation of networks with context-modulation is not yet supported, since there is no global argument
set in utils.cli_args yet.

Parameters

• config (argparse.Namespace) – Command-line arguments.

5.15. General helper functions for simulations 201

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace

hypnettorch, Release 1.0

Note: The function expects command-line arguments available according to the function
utils.cli_args.main_net_args().

• net_type (str) – The type of network. The following options are available:

– mlp: mnets.mlp.MLP

– resnet: mnets.resnet.ResNet

– wrn: mnets.wide_resnet.WRN

– iresnet: mnets.resnet_imgnet.ResNetIN

– zenke: mnets.zenkenet.ZenkeNet

– bio_conv_net: mnets.bio_conv_net.BioConvNet

– chunked_mlp: mnets.chunk_squeezer.ChunkSqueezer

– simple_rnn: mnets.simple_rnn.SimpleRNN

• in_shape (list) – Shape of network inputs. Can be None if not required by network type.

For instance: For an MLP network mnets.mlp.MLP with 100 input neurons it should be
in_shape=[100].

• out_shape (list) – Shape of network outputs. See in_shape for more details.

• device – PyTorch device.

• cprefix (str, optional) – A prefix of the config names. It might be, that the config
names used in this method are prefixed, since several main networks should be generated
(e.g., cprefix='gen_' or 'dis_' when training a GAN).

Also see docstring of parameter prefix in function utils.cli_args.main_net_args().

• no_weights (bool) – Whether the main network should be generated without weights.

• **mnet_kwargs – Additional keyword arguments that will be passed to the main network
constructor.

Returns
The created main network model.

hypnettorch.utils.sim_utils.setup_environment(config, logger_name='hnet_sim_logger')
Setup the general environment for training.

This function should be called at the beginning of a simulation script (right after the command-line arguments
have been parsed). The setup will incorporate:

• creating the output folder

• initializing logger

• making computation deterministic (depending on config)

• selecting the torch device

• creating the Tensorboard writer

Parameters

202 Chapter 5. Utilities and helper functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

hypnettorch, Release 1.0

• config (argparse.Namespace) – Command-line arguments.

Note: The function expects command-line arguments available according to the function
utils.cli_args.miscellaneous_args().

• logger_name (str) – Name of the logger to be created (time stamp will be appended to this
name).

Returns

Tuple containing:

• device: Torch device to be used.

• writer: Tensorboard writer. Note, you still have to close the writer manually!

• logger: Console (and file) logger.

Return type
(tuple)

5.16 Checkpointing PyTorch Models

This module provides functions to handle PyTorch checkpoints with a similar convenience as one might be used to in
Tensorflow.

hypnettorch.utils.torch_ckpts.
get_best_ckpt_path (...)

Returns the path to the checkpoint with the highest score.

hypnettorch.utils.torch_ckpts.
load_checkpoint(...)

Load a checkpoint from file.

hypnettorch.utils.torch_ckpts.
make_ckpt_list(...)

Creates a file that lists all checkpoints together with there
scores, such that one can easily find the checkpoint as-
sociated with the maximum score.

hypnettorch.utils.torch_ckpts.
save_checkpoint(...)

Save checkpoint to file.

hypnettorch.utils.torch_ckpts.get_best_ckpt_path(file_path)
Returns the path to the checkpoint with the highest score.

Parameters
file_path – See method save_checkpoints().

hypnettorch.utils.torch_ckpts.load_checkpoint(ckpt_path, net, device=None,
ret_performance_score=False)

Load a checkpoint from file.

Parameters

• ckpt_path – Path to checkpoint.

• net – The network, that should load the state dict saved in this checkpoint.

• device (optional) – The device currently used by the model. Can help to speed up loading
the checkpoint.

5.16. Checkpointing PyTorch Models 203

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

hypnettorch, Release 1.0

• ret_performance_score – If True, the score associated with this checkpoint will be re-
turned as well. See argument “performance_score” of method “save_ckecpoint”.

Returns
The loaded checkpoint. Note, the state_dict is already applied to the network. However, there
might be other important dict elements.

hypnettorch.utils.torch_ckpts.make_ckpt_list(file_path)
Creates a file that lists all checkpoints together with there scores, such that one can easily find the checkpoint
associated with the maximum score.

Parameters
file_path – See method save_checkpoints().

hypnettorch.utils.torch_ckpts.save_checkpoint(ckpt_dict, file_path, performance_score,
train_iter=None, max_ckpts_to_keep=5,
keep_cktp_every=2, timestamp=None)

Save checkpoint to file.

Example

save_checkpoint({
'state_dict': net.state_dict(),
'train_iter': curr_iteration

}, 'ckpts/my_net', current_test_accuracy)

Parameters

• ckpt_dict – A dict with mostly arbitrary content. Though, most important, it needs to
include the state dict and should also include the current training iteration.

• file_path –

Where to store the checkpoint. Note, the filepath should
not change. Instead, train_iter should be provided, such that this method can handle
the filenames by itself.

Note: The function currently assumes that within the same directory, no checkpoint filen-
name is the prefix of another checkpoint filename (e.g., if several networks are checkpointed
into the same directory).

• performance_score – A score that expresses the performance of the current network state,
e.g., accuracy for a classification task. This score is used to maintain the list of kept check-
points during training.

• train_iter (optional) – If given, it will be added to the filename. Otherwise, existing
checkpoints are simply overwritten.

• max_ckpts_to_keep – The maximum number of checkpoints to keep. This will use the
performance score to determine the n-1 checkpoints not to be deleted (where n is the number
of checkpoints to keep). The current checkpoint will always be saved.

• keep_cktp_every – If this option is not None, then every n hours one checkpoint will
be permanently saved, i.e., this checkpoint will not be maintained by ‘max_ckpts_to_keep’
anymore. The checkpoint to be kept will be the best one from the time window that spans
the last n hours.

204 Chapter 5. Utilities and helper functions

hypnettorch, Release 1.0

• timestamp (optional) – The timestamp of this checkpoint. If not given, a current times-
tamp will be used. This option is useful when one aims to synchronize checkpoint savings
from multiple networks.

A collection of helper functions that should capture common functionalities needed when working with PyTorch.

class hypnettorch.utils.torch_utils.CutoutTransform(n_holes, length)
Bases: object

Randomly mask out one or more patches from an image.

The cutout transformation as preprocessing step has been proposed by

DeVries et al., Improved Regularization of Convolutional Neural Networks with Cutout, 2017.

The original implementation can be found here.

Parameters

• n_holes (int) – Number of patches to cut out of each image.

• length (int) – The length (in pixels) of each square patch.

hypnettorch.utils.torch_utils.get_optimizer(params, lr, momentum=0, weight_decay=0,
use_adam=False, adam_beta1=0.9, use_rmsprop=False,
use_adadelta=False, use_adagrad=False,
pgroup_ids=None)

Create an optimizer instance for the given set of parameters. Default optimizer is torch.optim.SGD.

Parameters

• params (list) – The parameters passed to the optimizer.

• lr – Learning rate.

• momentum (optional) – Momentum (only applicable to torch.optim.SGD and torch.
optim.RMSprop.

• weight_decay (optional) – L2 penalty.

• use_adam – Use torch.optim.Adam optimizer.

• adam_beta1 – First parameter in the betas tuple that is passed to the optimizer torch.
optim.Adam: betas=(adam_beta1, 0.999).

• use_rmsprop – Use torch.optim.RMSprop optimizer.

• use_adadelta – Use torch.optim.Adadelta optimizer.

• use_adagrad – Use torch.optim.Adagrad optimizer.

• pgroup_ids (list, optional) – If passed, a list of integers of the same length as params
is expected. In this case, each integer states to which parameter group the corresponding
parameter in params shall belong. Parameter groups may have different optimizer settings.
Therefore, options like lr, momentum, weight_decay, adam_beta1 may be lists in this
case that have a length corresponding to the number of parameter groups.

Returns
Optimizer instance.

hypnettorch.utils.torch_utils.init_params(weights, bias=None)
Initialize the weights and biases of a linear or (transpose) conv layer.

Note, the implementation is based on the method “reset_parameters()”, that defines the original PyTorch initial-
ization for a linear or convolutional layer, resp. The implementations can be found here:

5.16. Checkpointing PyTorch Models 205

https://docs.python.org/3/library/functions.html#object
https://arxiv.org/abs/1708.04552
https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/generated/torch.optim.SGD.html#torch.optim.SGD
https://pytorch.org/docs/master/generated/torch.optim.RMSprop.html#torch.optim.RMSprop
https://pytorch.org/docs/master/generated/torch.optim.RMSprop.html#torch.optim.RMSprop
https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/master/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/master/generated/torch.optim.RMSprop.html#torch.optim.RMSprop
https://pytorch.org/docs/master/generated/torch.optim.Adadelta.html#torch.optim.Adadelta
https://pytorch.org/docs/master/generated/torch.optim.Adagrad.html#torch.optim.Adagrad
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

https://git.io/fhnxV

https://git.io/fhnx2

Parameters

• weights – The weight tensor to be initialized.

• bias (optional) – The bias tensor to be initialized.

hypnettorch.utils.torch_utils.lambda_lr_schedule(epoch)
Multiplicative Factor for Learning Rate Schedule.

Computes a multiplicative factor for the initial learning rate based on the current epoch. This method can be
used as argument lr_lambda of class torch.optim.lr_scheduler.LambdaLR.

The schedule is inspired by the Resnet CIFAR-10 schedule suggested here https://keras.io/examples/cifar10_
resnet/.

Parameters
epoch (int) – The number of epochs

Returns
learning rate scale

Return type
lr_scale (float32)

206 Chapter 5. Utilities and helper functions

https://git.io/fhnxV
https://git.io/fhnx2
https://pytorch.org/docs/master/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.LambdaLR
https://keras.io/examples/cifar10_resnet/
https://keras.io/examples/cifar10_resnet/
https://docs.python.org/3/library/functions.html#int

CHAPTER

SIX

TUTORIALS ON HOW TO USE HYPERNETWORKS IN PYTORCH

Here, we present a series of tutorials covering different aspects of the repository hypnettorch. These tutorials are
meant as an easy entrance point for coding with this package.

• Getting started

• How to smartly chunk the weights of a Resnet

• How to smartly chunk the weights of a Wide-Resnet

• MCMC sampling

207

https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/getting_started.ipynb
https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/smartly_chunked_resnet.ipynb
https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/wrn_chunking_strategies.ipynb
https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/hmc_example.ipynb

hypnettorch, Release 1.0

208 Chapter 6. Tutorials on how to use hypernetworks in PyTorch

CHAPTER

SEVEN

EXAMPLE IMPLEMENTATIONS THAT USE HYPNETTORCH

Contents

• Example implementations that use hypnettorch

– Continual learning with hypernetworks

∗ Usage instructions

∗ Learning from the example

· Script to run CL experiments with hypernetworks

Let’s dive into some example implementations that make use of the functionalities provided by the package
hypnettorch. You can explore the corresponding source code to see how to efficiently make use of all the func-
tionalities that hypnettorch offers.

7.1 Continual learning with hypernetworks

In continual learning (CL), a series of tasks (represented as datasets) 𝒟1, ...,𝒟𝑇 is learned sequentially, where only
one dataset at a time is available and at the end of training performance on all tasks should be high.

An approach based on hypernets for tackling this problem was introduced by von Oswald, Henning, Sacramento et al..
The official implementation can be found here. Goal of this example is it to demonstrate how hypnettorch can be
used to implement such CL approach. Therefore, we provide a simple and light implementation that showcases many
functionalities inherent to the package, but do not focus on being able to reproduce the variety of experiments
explored in the original paper.

For the sake of simplicity, we only focus on the simplest CL scenario, called task-incremental CL or CL1 (note, that
the original paper proposes three ways of tackling more complex CL scenarios, one of which has been further studied
in this paper). Predictions according to a task 𝑡 are made by inputting the corresponding task embedding e(𝑡) into the
hypernetwork in order to obtain the main network’s weights 𝜔(𝑡) = ℎ(e(𝑡), 𝜃), which in turn can be used for processing
inputs via 𝑓(𝑥, 𝜔(𝑡)). Forgetting is prevented by adding a simple regularizer to the loss while learning task 𝑡:

𝛽

𝑡− 1

∑︁
𝑡<𝑡′

‖ℎ(e(𝑡
′), 𝜃) − ℎ(e(𝑡

′,*), 𝜃(*))‖22 (7.1)

where 𝛽 is a regularization constant, e(𝑡′) are the task-embeddings, 𝜃 are the hypernets’ parameters and parameters
denoted by (*) are checkpointed from before starting to learn task 𝑡. Simply speaking, the regularizer aims to prevent
that the hypernetwork output ℎ(e(𝑡

′), 𝜃) for a previous task 𝑡′ changes compared to what was outputted before we started
to learn task 𝑡.

209

https://arxiv.org/abs/1906.00695
https://github.com/chrhenning/hypercl
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/2103.01133

hypnettorch, Release 1.0

Note: The original paper uses a lookahead in the regularizer which showed marginal performance improvements.
Follow-up work (e.g., here and here) discarded this lookahead for computational convenience. We ignore it as well!

7.1.1 Usage instructions

The script hypnettorch.examples.hypercl.run showcases how a versatile simulation can be build with relatively
little coding effort. You can explore the basic functionality of the script via

$ python run.py --help

Note: The default arguments have not been hyperparameter-searched and may thus not reflect best possible perfor-
mance.

By default, the script will run a SplitMNIST simulation (argument --cl_exp)

$ python run.py

The default network (argument --net_type) is a 2-hidden-layer MLP and the corresponding hypernetwork has been
chosen to have roughly the same number of parameters (compression ratio is approx. 1).

Via the argument --hnet_reg_batch_size you can choose up to how many task should be used for the regularization
in Eq. (7.1) (rather than always evaluating the sum over all previous tasks). This ensures that the computational budget
of the regularization doesn’t grow with the number of tasks. For instance, if at every iteration a single random (previous)
task should be selected for regularization, just use

$ python run.py --hnet_reg_batch_size=1

You can also run other CL experiments, such as PermutedMNIST (e.g., via arguments --cl_exp=permmnist
--num_classes_per_task=10 --num_tasks=10) or SplitCIFAR-10/100 (e.g., via arguments
--cl_exp=splitcifar --num_classes_per_task=10 --num_tasks=6 --net_type=resnet). Keep in
mind, that with a change in dataset or main network, model sizes change and thus another hypernetwork should be
chosen if a certain compression ratio should be accomplished.

7.1.2 Learning from the example

Goal of this example is it to get familiar with the capabilities of the package hypnettorch. This can best be accom-
plished by reading through the source code, starting with the main function hypnettorch.examples.hypercl.run.
run().

1. The script makes use of module hypnettorch.utils.cli_args for defining command-line arguments. With
a few lines of code, a large variety of arguments are created to, for instance, flexibly determine the architecture
of the main- and hypernetwork.

2. Using those predefined arguments allows to quickly instantiate the corresponding networks by using functions
of module hypnettorch.utils.sim_utils.

3. Continual learning datasets are generated with the help of specialized data handlers, e.g., hypnettorch.data.
special.split_mnist.get_split_mnist_handlers().

4. Hypernet regularization (Eq. (7.1)) is easily realized via the helper functions in module hypnettorch.utils.
hnet_regularizer.

210 Chapter 7. Example implementations that use hypnettorch

https://github.com/mariacer/cl_in_rnns
https://github.com/chrhenning/posterior_replay_cl

hypnettorch, Release 1.0

There are many other utilities that might be useful, but that are not incorporated in the example for the sake of simplicity.
For instance:

• The module hypnettorch.utils.torch_ckpts can be used to easily save and load networks.

• The script can be emebedded into the hyperparameter-search framework of subpackage hpsearch to easily scan
for hyperparameters that yield good performance.

More sophisticated examples can also be explored in the PR-CL repository (note, the interface used in this repository
is almost identical to hypnettorch’s interface, except that the package wasn’t called hypnettorch back then yet).

Script to run CL experiments with hypernetworks

This script showcases the usage of hypnettorch by demonstrating how to use the pacakge for writing a continual
learning simulation that utilizes hypernetworks. See here for details on the approach and usage instructions.

hypnettorch.examples.hypercl.run.evaluate(task_id, data, mnet, hnet, device, config, logger, writer,
train_iter)

Evaluate the network.

Evaluate the performance of the network on a single task on the validation set during training.

Parameters
(....) – See docstring of function train().

train_iter (int): The current training iteration.

hypnettorch.examples.hypercl.run.load_datasets(config, logger, writer)
Load the datasets corresponding to individual tasks.

Parameters

• config (argparse.Namespace) – Command-line arguments.

• logger (logging.Logger) – Logger object.

• writer (tensorboardX.SummaryWriter) – Tensorboard logger.

Returns
A list of data handlers hypnettorch.data.dataset.Dataset.

Return type
(list)

hypnettorch.examples.hypercl.run.run()

Run the script.

1. Define and parse command-line arguments

2. Setup environment

3. Load data

4. Instantiate models

5. Run training for each task

hypnettorch.examples.hypercl.run.test(dhandlers, mnet, hnet, device, config, logger, writer)
Evaluate the network.

Evaluate the performance of the network on a single task on the validation set during training.

Parameters

7.1. Continual learning with hypernetworks 211

https://github.com/chrhenning/posterior_replay_cl
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#list

hypnettorch, Release 1.0

• (....) – See docstring of function train().

• dhandlers (list) – Datasets of tasks that should be tested. We assume that the index of
the dataset corresponds to the index of the task embedding used as input to the hypernet.

hypnettorch.examples.hypercl.run.train(task_id, data, mnet, hnet, device, config, logger, writer)
Train the network using the task-specific loss plus a regularizer that should mitigate catastrophic forgetting.

loss = task_loss + 𝛽 * regularizer

Parameters

• task_id (int) – The index of the task on which we train.

• data (hypnettorch.data.dataset.Dataset) – The dataset handler for the current task,
corresponding to task_id.

• mnet (hypnettorch.mnets.mnet_interface.MainNetInterface) – The model of the
main network, which is needed to make predictions.

• hnet (hypnettorch.hnets.hnet_interface.HyperNetInterface) – The model of
the hyper network, which contains the parameters to be learned.

• device – (torch.device) Torch device (cpu or gpu).

• config (argparse.Namespace) – Command-line arguments.

• logger (logging.Logger) – Logger object.

• writer (tensorboardX.SummaryWriter) – Tensorboard logger.

This package provides functionalities to easily work with hypernetworks in PyTorch. A hypernetwork ℎ(e, 𝜃) is a neural
network with parameters 𝜃 that generates the parameters 𝜔 of another neural network 𝑓(x, 𝜔), called main network.
These two network types require specialized implementations. For instance, a main network must have the ability to
receive its own weights 𝜔 as additional input to the forward method (see subpackage mnets). A collection of different
hypernetwork implementations can be found in subpackage hnets.

212 Chapter 7. Example implementations that use hypnettorch

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/logging.html#logging.Logger

CHAPTER

EIGHT

INSTALLATION

See here.

213

https://github.com/chrhenning/hypnettorch#installation

hypnettorch, Release 1.0

214 Chapter 8. Installation

CHAPTER

NINE

USAGE

Check out the tutorials, especially the getting started tutorial.

You can also check out example implementations that make use of hypnettorch.

215

https://github.com/chrhenning/hypnettorch/blob/master/hypnettorch/tutorials/getting_started.ipynb

hypnettorch, Release 1.0

216 Chapter 9. Usage

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

217

hypnettorch, Release 1.0

218 Chapter 10. Indices and tables

BIBLIOGRAPHY

[EWC2017] https://arxiv.org/abs/1612.00796

[OnEWC2018] https://arxiv.org/abs/1805.06370

219

https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1805.06370

hypnettorch, Release 1.0

220 Bibliography

PYTHON MODULE INDEX

h
hypnettorch.data.celeba_data, 18
hypnettorch.data.cifar100_data, 21
hypnettorch.data.cifar10_data, 19
hypnettorch.data.cub_200_2011_data, 22
hypnettorch.data.dataset, 4
hypnettorch.data.fashion_mnist, 24
hypnettorch.data.ilsvrc2012_data, 25
hypnettorch.data.large_img_dataset, 14
hypnettorch.data.mnist_data, 27
hypnettorch.data.sequential_dataset, 16
hypnettorch.data.special.donuts, 32
hypnettorch.data.special.gaussian_mixture_data,

33
hypnettorch.data.special.gmm_data, 37
hypnettorch.data.special.permuted_mnist, 46
hypnettorch.data.special.regression1d_bimodal_data,

45
hypnettorch.data.special.regression1d_data,

42
hypnettorch.data.special.split_cifar, 50
hypnettorch.data.special.split_mnist, 48
hypnettorch.data.svhn_data, 29
hypnettorch.data.timeseries.audioset_data, 58
hypnettorch.data.timeseries.cognitive_tasks.cognitive_data,

63
hypnettorch.data.timeseries.copy_data, 53
hypnettorch.data.timeseries.mud_data, 57
hypnettorch.data.timeseries.rnd_rec_teacher,

60
hypnettorch.data.timeseries.seq_smnist, 64
hypnettorch.data.timeseries.smnist_data, 59
hypnettorch.data.timeseries.split_audioset,

65
hypnettorch.data.timeseries.split_smnist, 66
hypnettorch.data.udacity_ch2, 30
hypnettorch.examples.hypercl.run, 211
hypnettorch.hnets.chunked_deconv_hnet, 74
hypnettorch.hnets.chunked_mlp_hnet, 76
hypnettorch.hnets.deconv_hnet, 80
hypnettorch.hnets.hnet_container, 82
hypnettorch.hnets.hnet_helpers, 85

hypnettorch.hnets.hnet_interface, 69
hypnettorch.hnets.hnet_perturbation_wrapper,

87
hypnettorch.hnets.mlp_hnet, 90
hypnettorch.hnets.structured_hmlp_examples,

94
hypnettorch.hnets.structured_mlp_hnet, 97
hypnettorch.hpsearch.gather_random_seeds, 106
hypnettorch.hpsearch.hpsearch, 110
hypnettorch.hpsearch.hpsearch_config_template,

108
hypnettorch.hpsearch.hpsearch_postprocessing,

110
hypnettorch.mnets.bi_rnn, 113
hypnettorch.mnets.bio_conv_net, 116
hypnettorch.mnets.classifier_interface, 120
hypnettorch.mnets.lenet, 122
hypnettorch.mnets.mlp, 124
hypnettorch.mnets.mnet_interface, 128
hypnettorch.mnets.resnet, 134
hypnettorch.mnets.resnet_imgnet, 137
hypnettorch.mnets.simple_rnn, 139
hypnettorch.mnets.wide_resnet, 147
hypnettorch.mnets.zenkenet, 150
hypnettorch.utils.batchnorm_layer, 153
hypnettorch.utils.cli_args, 158
hypnettorch.utils.context_mod_layer, 167
hypnettorch.utils.ewc_regularizer, 172
hypnettorch.utils.gan_helpers, 177
hypnettorch.utils.hmc, 178
hypnettorch.utils.hnet_regularizer, 186
hypnettorch.utils.init_utils, 189
hypnettorch.utils.local_conv2d_layer, 189
hypnettorch.utils.logger_config, 191
hypnettorch.utils.misc, 192
hypnettorch.utils.optim_step, 194
hypnettorch.utils.self_attention_layer, 195
hypnettorch.utils.si_regularizer, 197
hypnettorch.utils.sim_utils, 200
hypnettorch.utils.torch_ckpts, 203
hypnettorch.utils.torch_utils, 205

221

hypnettorch, Release 1.0

222 Python Module Index

INDEX

A
acceptance_probability (hypnet-

torch.utils.hmc.HMC property), 180
acceptance_probability (hypnet-

torch.utils.hmc.MCMC property), 181
accuracy() (hypnettorch.mnets.classifier_interface.Classifier

static method), 120
accuracy() (in module hypnettorch.utils.gan_helpers),

177
adam_step() (in module hypnettorch.utils.optim_step),

194
add_to_uncond_params() (hypnet-

torch.hnets.hnet_interface.HyperNetInterface
method), 70

apply_chunked_hyperfan_init() (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
method), 77

apply_hyperfan_init() (hypnet-
torch.hnets.mlp_hnet.HMLP method), 91

AudiosetData (class in hypnet-
torch.data.timeseries.audioset_data), 59

avg_acceptance_probability (hypnet-
torch.utils.hmc.MultiChainHMC property),
183

B
basic_rnn_step() (hypnet-

torch.mnets.simple_rnn.SimpleRNN method),
141

batchnorm_layers (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 128

BatchNormLayer (class in hypnet-
torch.utils.batchnorm_layer), 154

BimodalToyRegression (class in hypnet-
torch.data.special.regression1d_bimodal_data),
45

BioConvNet (class in hypnettorch.mnets.bio_conv_net),
117

BiRNN (class in hypnettorch.mnets.bi_rnn), 113
bptt_depth (hypnettorch.mnets.simple_rnn.SimpleRNN

property), 142

build_grid_and_conditions() (in module hypnet-
torch.hpsearch.gather_random_seeds), 106

C
calc_delta_theta() (in module hypnet-

torch.utils.optim_step), 194
calc_fan_in_and_out() (in module hypnet-

torch.utils.init_utils), 189
calc_fix_target_reg() (in module hypnet-

torch.utils.hnet_regularizer), 187
calc_train_iter() (in module hypnet-

torch.utils.sim_utils), 200
CelebAData (class in hypnettorch.data.celeba_data), 18
chains (hypnettorch.utils.hmc.MultiChainHMC prop-

erty), 183
check_invalid_argument_usage() (in module hyp-

nettorch.utils.cli_args), 158
checkpoint_stats() (hypnet-

torch.utils.batchnorm_layer.BatchNormLayer
method), 155

checkpoint_weights() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 169

chunk_emb_shapes (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
property), 100

chunk_emb_size (hypnet-
torch.hnets.chunked_deconv_hnet.ChunkedHDeconv
property), 75

chunk_emb_size (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
property), 79

ChunkedHDeconv (class in hypnet-
torch.hnets.chunked_deconv_hnet), 74

ChunkedHMLP (class in hypnet-
torch.hnets.chunked_mlp_hnet), 76

CIFAR100Data (class in hypnet-
torch.data.cifar100_data), 21

CIFAR10Data (class in hypnettorch.data.cifar10_data),
19

cl_args() (in module hypnettorch.utils.cli_args), 158
classification (hypnettorch.data.dataset.Dataset

223

hypnettorch, Release 1.0

property), 6
Classifier (class in hypnet-

torch.mnets.classifier_interface), 120
clear_position_trajectory() (hypnet-

torch.utils.hmc.HMC method), 180
clear_position_trajectory() (hypnet-

torch.utils.hmc.MCMC method), 181
CognitiveTasks (class in hypnet-

torch.data.timeseries.cognitive_tasks.cognitive_data),
63

compute_basic_rnn_output() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
142

compute_fc_outputs() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
142

compute_fisher() (in module hypnet-
torch.utils.ewc_regularizer), 172

compute_hidden_states() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
143

concat_mean_stats() (in module hypnet-
torch.utils.gan_helpers), 177

cond_chunk_embs (hypnet-
torch.hnets.chunked_deconv_hnet.ChunkedHDeconv
property), 75

cond_chunk_embs (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
property), 79

cond_chunk_embs (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
property), 101

conditional_param_shapes (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 70

conditional_param_shapes_ref (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 70

conditional_params (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 70

conditions (in module hypnet-
torch.hpsearch.hpsearch_config_template),
109

config_logger() (in module hypnet-
torch.utils.logger_config), 192

configure_matplotlib_params() (in module hypnet-
torch.utils.misc), 192

construct_ideal_student() (hypnet-
torch.data.timeseries.rnd_rec_teacher.RndRecTeacher
static method), 62

context_mod_forward() (in module hypnet-
torch.utils.ewc_regularizer), 176

context_mod_layers (hypnet-

torch.mnets.mnet_interface.MainNetInterface
property), 128

ContextModLayer (class in hypnet-
torch.utils.context_mod_layer), 167

convert_out_format() (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
method), 71

CopyTask (class in hypnet-
torch.data.timeseries.copy_data), 53

cov (hypnettorch.data.special.gaussian_mixture_data.GaussianData
property), 34

create_permutation_matrix() (hypnet-
torch.data.timeseries.copy_data.CopyTask
static method), 55

CUB2002011 (class in hypnet-
torch.data.cub_200_2011_data), 23

current_position (hypnettorch.utils.hmc.HMC prop-
erty), 180

current_position (hypnettorch.utils.hmc.MCMC
property), 182

custom_init() (hypnet-
torch.mnets.mnet_interface.MainNetInterface
method), 128

CutoutTransform (class in hypnet-
torch.utils.torch_utils), 205

D
data_args() (in module hypnettorch.utils.cli_args), 159
Dataset (class in hypnettorch.data.dataset), 5
decode_batch() (hypnet-

torch.data.timeseries.mud_data.MUDData
method), 57

dis_loss() (in module hypnettorch.utils.gan_helpers),
177

distillation_targets() (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
method), 79

distillation_targets() (hypnet-
torch.hnets.deconv_hnet.HDeconv method),
81

distillation_targets() (hypnet-
torch.hnets.hnet_container.HContainer
method), 84

distillation_targets() (hypnet-
torch.hnets.hnet_perturbation_wrapper.HPerturbWrapper
method), 89

distillation_targets() (hypnet-
torch.hnets.mlp_hnet.HMLP method), 94

distillation_targets() (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
method), 101

distillation_targets() (hypnet-
torch.mnets.bi_rnn.BiRNN method), 114

224 Index

hypnettorch, Release 1.0

distillation_targets() (hypnet-
torch.mnets.bio_conv_net.BioConvNet
method), 119

distillation_targets() (hypnet-
torch.mnets.lenet.LeNet method), 123

distillation_targets() (hypnet-
torch.mnets.mlp.MLP method), 127

distillation_targets() (hypnet-
torch.mnets.mnet_interface.MainNetInterface
method), 129

distillation_targets() (hypnet-
torch.mnets.resnet.ResNet method), 136

distillation_targets() (hypnet-
torch.mnets.resnet_imgnet.ResNetIN method),
139

distillation_targets() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
143

distillation_targets() (hypnet-
torch.mnets.wide_resnet.WRN method), 149

distillation_targets() (hypnet-
torch.mnets.zenkenet.ZenkeNet method),
151

Donuts (class in hypnettorch.data.special.donuts), 32

E
estimate_distance() (hypnet-

torch.data.special.gmm_data.GMMData
method), 38

estimate_mode_coverage() (hypnet-
torch.data.special.gmm_data.GMMData
method), 39

eval_args() (in module hypnettorch.utils.cli_args), 160
evaluate() (in module hypnet-

torch.examples.hypercl.run), 211
ewc_regularizer() (in module hypnet-

torch.utils.ewc_regularizer), 176

F
FashionMNISTData (class in hypnet-

torch.data.fashion_mnist), 24
flatten_and_remove_out_heads() (in module hyp-

nettorch.utils.hnet_regularizer), 188
flatten_params() (hypnet-

torch.mnets.mnet_interface.MainNetInterface
static method), 129

forward() (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv
method), 75

forward() (hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP
method), 79

forward() (hypnettorch.hnets.deconv_hnet.HDeconv
method), 81

forward() (hypnettorch.hnets.hnet_container.HContainer
method), 85

forward() (hypnettorch.hnets.hnet_interface.HyperNetInterface
method), 71

forward() (hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper
method), 89

forward() (hypnettorch.hnets.mlp_hnet.HMLP method),
94

forward() (hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP
method), 101

forward() (hypnettorch.mnets.bi_rnn.BiRNN method),
115

forward() (hypnettorch.mnets.bio_conv_net.BioConvNet
method), 119

forward() (hypnettorch.mnets.lenet.LeNet method), 124
forward() (hypnettorch.mnets.mlp.MLP method), 127
forward() (hypnettorch.mnets.mnet_interface.MainNetInterface

method), 129
forward() (hypnettorch.mnets.resnet.ResNet method),

136
forward() (hypnettorch.mnets.resnet_imgnet.ResNetIN

method), 139
forward() (hypnettorch.mnets.simple_rnn.SimpleRNN

method), 144
forward() (hypnettorch.mnets.wide_resnet.WRN

method), 150
forward() (hypnettorch.mnets.zenkenet.ZenkeNet

method), 151
forward() (hypnettorch.utils.batchnorm_layer.BatchNormLayer

method), 155
forward() (hypnettorch.utils.context_mod_layer.ContextModLayer

method), 169
forward() (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer

method), 191
forward() (hypnettorch.utils.self_attention_layer.SelfAttnLayer

method), 196
forward() (hypnettorch.utils.self_attention_layer.SelfAttnLayerV2

method), 197

G
gain_offset_applied (hypnet-

torch.utils.context_mod_layer.ContextModLayer
property), 170

gain_softplus_applied (hypnet-
torch.utils.context_mod_layer.ContextModLayer
property), 170

gan_args() (in module hypnettorch.utils.cli_args), 160
GaussianData (class in hypnet-

torch.data.special.gaussian_mixture_data),
34

gen_loss() (in module hypnettorch.utils.gan_helpers),
178

generator_args() (in module hypnet-
torch.utils.cli_args), 161

get_attribute_names() (hypnet-
torch.data.celeba_data.CelebAData method),

Index 225

hypnettorch, Release 1.0

19
get_best_ckpt_path() (in module hypnet-

torch.utils.torch_ckpts), 203
get_best_hpsearch_config() (in module hypnet-

torch.hpsearch.gather_random_seeds), 107
get_chunk_emb() (hypnet-

torch.hnets.chunked_deconv_hnet.ChunkedHDeconv
method), 76

get_chunk_emb() (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
method), 80

get_chunk_embs() (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
method), 101

get_cm_inds() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
144

get_cm_weights() (hypnettorch.mnets.bi_rnn.BiRNN
method), 116

get_cm_weights() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
145

get_colorbrewer2_colors() (in module hypnet-
torch.utils.misc), 192

get_cond_in_emb() (hypnet-
torch.hnets.chunked_deconv_hnet.ChunkedHDeconv
method), 76

get_cond_in_emb() (hypnet-
torch.hnets.chunked_mlp_hnet.ChunkedHMLP
method), 80

get_cond_in_emb() (hypnet-
torch.hnets.deconv_hnet.HDeconv method),
82

get_cond_in_emb() (hypnet-
torch.hnets.mlp_hnet.HMLP method), 94

get_cond_in_emb() (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
method), 102

get_conditional_parameters() (in module hypnet-
torch.hnets.hnet_helpers), 86

get_current_targets() (in module hypnet-
torch.utils.hnet_regularizer), 188

get_default_args() (in module hypnet-
torch.utils.misc), 192

get_gmm_tasks() (in module hypnet-
torch.data.special.gaussian_mixture_data),
35

get_hpsearch_call() (in module hypnet-
torch.hpsearch.gather_random_seeds), 107

get_hypernet() (in module hypnet-
torch.utils.sim_utils), 200

get_identifier() (hypnet-
torch.data.celeba_data.CelebAData method),
19

get_identifier() (hypnet-
torch.data.cifar100_data.CIFAR100Data
method), 22

get_identifier() (hypnet-
torch.data.cifar10_data.CIFAR10Data
method), 20

get_identifier() (hypnet-
torch.data.cub_200_2011_data.CUB2002011
method), 24

get_identifier() (hypnettorch.data.dataset.Dataset
method), 6

get_identifier() (hypnet-
torch.data.fashion_mnist.FashionMNISTData
method), 24

get_identifier() (hypnet-
torch.data.ilsvrc2012_data.ILSVRC2012Data
method), 26

get_identifier() (hypnet-
torch.data.mnist_data.MNISTData method),
28

get_identifier() (hypnet-
torch.data.special.donuts.Donuts method),
33

get_identifier() (hypnet-
torch.data.special.gaussian_mixture_data.GaussianData
method), 34

get_identifier() (hypnet-
torch.data.special.gmm_data.GMMData
method), 39

get_identifier() (hypnet-
torch.data.special.permuted_mnist.PermutedMNIST
method), 46

get_identifier() (hypnet-
torch.data.special.regression1d_bimodal_data.BimodalToyRegression
method), 46

get_identifier() (hypnet-
torch.data.special.regression1d_data.ToyRegression
method), 43

get_identifier() (hypnet-
torch.data.special.split_cifar.SplitCIFAR100Data
method), 51

get_identifier() (hypnet-
torch.data.special.split_cifar.SplitCIFAR10Data
method), 51

get_identifier() (hypnet-
torch.data.special.split_mnist.SplitMNIST
method), 49

get_identifier() (hypnet-
torch.data.svhn_data.SVHNData method),
30

get_identifier() (hypnet-
torch.data.timeseries.audioset_data.AudiosetData
method), 59

get_identifier() (hypnet-

226 Index

hypnettorch, Release 1.0

torch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks
method), 63

get_identifier() (hypnet-
torch.data.timeseries.copy_data.CopyTask
method), 56

get_identifier() (hypnet-
torch.data.timeseries.mud_data.MUDData
method), 58

get_identifier() (hypnet-
torch.data.timeseries.rnd_rec_teacher.RndRecTeacher
method), 63

get_identifier() (hypnet-
torch.data.timeseries.seq_smnist.SeqSMNIST
method), 65

get_identifier() (hypnet-
torch.data.timeseries.smnist_data.SMNISTData
method), 60

get_identifier() (hypnet-
torch.data.timeseries.split_audioset.SplitAudioset
method), 65

get_identifier() (hypnet-
torch.data.timeseries.split_smnist.SplitSMNIST
method), 67

get_identifier() (hypnet-
torch.data.udacity_ch2.UdacityCh2Data
method), 31

get_in_seq_lengths() (hypnet-
torch.data.sequential_dataset.SequentialDataset
method), 17

get_input_mesh() (hypnet-
torch.data.special.gmm_data.GMMData
method), 39

get_mnet_model() (in module hypnet-
torch.utils.sim_utils), 201

get_mud_handlers() (in module hypnet-
torch.data.timeseries.mud_data), 58

get_non_cm_weights() (hypnet-
torch.mnets.bi_rnn.BiRNN method), 116

get_non_cm_weights() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
145

get_optimizer() (in module hypnet-
torch.utils.torch_utils), 205

get_out_pattern_bounds() (hypnet-
torch.data.timeseries.copy_data.CopyTask
method), 56

get_out_seq_lengths() (hypnet-
torch.data.sequential_dataset.SequentialDataset
method), 17

get_output_weight_mask() (hypnet-
torch.mnets.mnet_interface.MainNetInterface
method), 130

get_output_weight_mask() (hypnet-
torch.mnets.resnet_imgnet.ResNetIN method),

139
get_output_weight_mask() (hypnet-

torch.mnets.simple_rnn.SimpleRNN method),
145

get_output_weight_mask() (hypnet-
torch.mnets.wide_resnet.WRN method), 150

get_single_run_config() (in module hypnet-
torch.hpsearch.gather_random_seeds), 107

get_split_audioset_handlers() (in module hypnet-
torch.data.timeseries.split_audioset), 66

get_split_cifar_handlers() (in module hypnet-
torch.data.special.split_cifar), 51

get_split_mnist_handlers() (in module hypnet-
torch.data.special.split_mnist), 49

get_split_smnist_handlers() (in module hypnet-
torch.data.timeseries.split_smnist), 67

get_stats() (hypnettorch.utils.batchnorm_layer.BatchNormLayer
method), 157

get_task_emb() (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
method), 72

get_task_embs() (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
method), 72

get_test_ids() (hypnettorch.data.dataset.Dataset
method), 6

get_test_inputs() (hypnettorch.data.dataset.Dataset
method), 6

get_test_inputs() (hypnet-
torch.data.large_img_dataset.LargeImgDataset
method), 15

get_test_outputs() (hypnet-
torch.data.dataset.Dataset method), 6

get_train_ids() (hypnettorch.data.dataset.Dataset
method), 6

get_train_inputs() (hypnet-
torch.data.dataset.Dataset method), 7

get_train_inputs() (hypnet-
torch.data.large_img_dataset.LargeImgDataset
method), 15

get_train_outputs() (hypnet-
torch.data.dataset.Dataset method), 7

get_val_ids() (hypnettorch.data.dataset.Dataset
method), 7

get_val_inputs() (hypnettorch.data.dataset.Dataset
method), 7

get_val_inputs() (hypnet-
torch.data.large_img_dataset.LargeImgDataset
method), 15

get_val_outputs() (hypnettorch.data.dataset.Dataset
method), 8

get_weights() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 170

Index 227

hypnettorch, Release 1.0

get_zeroed_ts() (hypnet-
torch.data.timeseries.copy_data.CopyTask
method), 56

GMMData (class in hypnettorch.data.special.gmm_data),
37

grid (in module hypnet-
torch.hpsearch.hpsearch_config_template),
109

H
has_bias (hypnettorch.mnets.mnet_interface.MainNetInterface

property), 130
has_bias (hypnettorch.mnets.resnet_imgnet.ResNetIN

property), 139
has_bias (hypnettorch.mnets.wide_resnet.WRN prop-

erty), 150
has_fc_out (hypnettorch.mnets.mnet_interface.MainNetInterface

property), 130
has_gains (hypnettorch.utils.context_mod_layer.ContextModLayer

property), 170
has_linear_out (hypnet-

torch.mnets.mnet_interface.MainNetInterface
property), 130

has_shifts (hypnettorch.utils.context_mod_layer.ContextModLayer
property), 170

HContainer (class in hypnettorch.hnets.hnet_container),
83

HDeconv (class in hypnettorch.hnets.deconv_hnet), 80
HMC (class in hypnettorch.utils.hmc), 179
HMLP (class in hypnettorch.hnets.mlp_hnet), 90
hnet_args() (in module hypnettorch.utils.cli_args), 161
HPerturbWrapper (class in hypnet-

torch.hnets.hnet_perturbation_wrapper),
87

hpsearch_cli_arguments() (in module hypnet-
torch.hpsearch.hpsearch), 110

hyper_shapes (hypnet-
torch.utils.batchnorm_layer.BatchNormLayer
property), 157

hyper_shapes_distilled (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 131

hyper_shapes_learned (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 131

hyper_shapes_learned_ref (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 131

HyperNetInterface (class in hypnet-
torch.hnets.hnet_interface), 70

hypnettorch.data.celeba_data
module, 18

hypnettorch.data.cifar100_data
module, 21

hypnettorch.data.cifar10_data
module, 19

hypnettorch.data.cub_200_2011_data
module, 22

hypnettorch.data.dataset
module, 4

hypnettorch.data.fashion_mnist
module, 24

hypnettorch.data.ilsvrc2012_data
module, 25

hypnettorch.data.large_img_dataset
module, 14

hypnettorch.data.mnist_data
module, 27

hypnettorch.data.sequential_dataset
module, 16

hypnettorch.data.special.donuts
module, 32

hypnettorch.data.special.gaussian_mixture_data
module, 33

hypnettorch.data.special.gmm_data
module, 37

hypnettorch.data.special.permuted_mnist
module, 46

hypnettorch.data.special.regression1d_bimodal_data
module, 45

hypnettorch.data.special.regression1d_data
module, 42

hypnettorch.data.special.split_cifar
module, 50

hypnettorch.data.special.split_mnist
module, 48

hypnettorch.data.svhn_data
module, 29

hypnettorch.data.timeseries.audioset_data
module, 58

hypnettorch.data.timeseries.cognitive_tasks.cognitive_data
module, 63

hypnettorch.data.timeseries.copy_data
module, 53

hypnettorch.data.timeseries.mud_data
module, 57

hypnettorch.data.timeseries.rnd_rec_teacher
module, 60

hypnettorch.data.timeseries.seq_smnist
module, 64

hypnettorch.data.timeseries.smnist_data
module, 59

hypnettorch.data.timeseries.split_audioset
module, 65

hypnettorch.data.timeseries.split_smnist
module, 66

hypnettorch.data.udacity_ch2
module, 30

228 Index

hypnettorch, Release 1.0

hypnettorch.examples.hypercl.run
module, 211

hypnettorch.hnets.chunked_deconv_hnet
module, 74

hypnettorch.hnets.chunked_mlp_hnet
module, 76

hypnettorch.hnets.deconv_hnet
module, 80

hypnettorch.hnets.hnet_container
module, 82

hypnettorch.hnets.hnet_helpers
module, 85

hypnettorch.hnets.hnet_interface
module, 69

hypnettorch.hnets.hnet_perturbation_wrapper
module, 87

hypnettorch.hnets.mlp_hnet
module, 90

hypnettorch.hnets.structured_hmlp_examples
module, 94

hypnettorch.hnets.structured_mlp_hnet
module, 97

hypnettorch.hpsearch.gather_random_seeds
module, 106

hypnettorch.hpsearch.hpsearch
module, 110

hypnettorch.hpsearch.hpsearch_config_template
module, 108

hypnettorch.hpsearch.hpsearch_postprocessing
module, 110

hypnettorch.mnets.bi_rnn
module, 113

hypnettorch.mnets.bio_conv_net
module, 116

hypnettorch.mnets.classifier_interface
module, 120

hypnettorch.mnets.lenet
module, 122

hypnettorch.mnets.mlp
module, 124

hypnettorch.mnets.mnet_interface
module, 128

hypnettorch.mnets.resnet
module, 134

hypnettorch.mnets.resnet_imgnet
module, 137

hypnettorch.mnets.simple_rnn
module, 139

hypnettorch.mnets.wide_resnet
module, 147

hypnettorch.mnets.zenkenet
module, 150

hypnettorch.utils.batchnorm_layer
module, 153

hypnettorch.utils.cli_args
module, 158

hypnettorch.utils.context_mod_layer
module, 167

hypnettorch.utils.ewc_regularizer
module, 172

hypnettorch.utils.gan_helpers
module, 177

hypnettorch.utils.hmc
module, 178

hypnettorch.utils.hnet_regularizer
module, 186

hypnettorch.utils.init_utils
module, 189

hypnettorch.utils.local_conv2d_layer
module, 189

hypnettorch.utils.logger_config
module, 191

hypnettorch.utils.misc
module, 192

hypnettorch.utils.optim_step
module, 194

hypnettorch.utils.self_attention_layer
module, 195

hypnettorch.utils.si_regularizer
module, 197

hypnettorch.utils.sim_utils
module, 200

hypnettorch.utils.torch_ckpts
module, 203

hypnettorch.utils.torch_utils
module, 205

I
ILSVRC2012Data (class in hypnet-

torch.data.ilsvrc2012_data), 25
imgs_path (hypnettorch.data.large_img_dataset.LargeImgDataset

property), 15
in_shape (hypnettorch.data.dataset.Dataset property), 8
init_args() (in module hypnettorch.utils.cli_args), 162
init_chunk_embeddings() (in module hypnet-

torch.hnets.hnet_helpers), 86
init_conditional_embeddings() (in module hypnet-

torch.hnets.hnet_helpers), 86
init_hh_weights_orthogonal() (hypnet-

torch.mnets.bi_rnn.BiRNN method), 116
init_hh_weights_orthogonal() (hypnet-

torch.mnets.simple_rnn.SimpleRNN method),
145

init_params() (in module hypnettorch.utils.misc), 192
init_params() (in module hypnet-

torch.utils.torch_utils), 205
input_to_torch_tensor() (hypnet-

torch.data.cifar100_data.CIFAR100Data

Index 229

hypnettorch, Release 1.0

method), 22
input_to_torch_tensor() (hypnet-

torch.data.cifar10_data.CIFAR10Data
method), 20

input_to_torch_tensor() (hypnet-
torch.data.dataset.Dataset method), 8

input_to_torch_tensor() (hypnet-
torch.data.fashion_mnist.FashionMNISTData
method), 25

input_to_torch_tensor() (hypnet-
torch.data.large_img_dataset.LargeImgDataset
method), 15

input_to_torch_tensor() (hypnet-
torch.data.mnist_data.MNISTData method),
28

input_to_torch_tensor() (hypnet-
torch.data.sequential_dataset.SequentialDataset
method), 17

input_to_torch_tensor() (hypnet-
torch.data.special.permuted_mnist.PermutedMNIST
method), 46

input_to_torch_tensor() (hypnet-
torch.data.svhn_data.SVHNData method),
30

input_to_torch_tensor() (hypnet-
torch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks
method), 63

input_to_torch_tensor() (hypnet-
torch.data.timeseries.mud_data.MUDData
method), 58

internal_hnet (hypnet-
torch.hnets.hnet_perturbation_wrapper.HPerturbWrapper
property), 89

internal_hnets (hypnet-
torch.hnets.hnet_container.HContainer prop-
erty), 85

internal_hnets (hypnet-
torch.hnets.structured_mlp_hnet.StructuredHMLP
property), 102

internal_params (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 131

internal_params_ref (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 131

is_image_dataset() (hypnet-
torch.data.dataset.Dataset method), 8

is_one_hot (hypnettorch.data.dataset.Dataset prop-
erty), 9

K
knowledge_distillation_loss() (hypnet-

torch.mnets.classifier_interface.Classifier
static method), 120

L
lambda_lr_schedule() (in module hypnet-

torch.utils.torch_utils), 206
LargeImgDataset (class in hypnet-

torch.data.large_img_dataset), 15
layer_bias_vectors (hypnet-

torch.mnets.mnet_interface.MainNetInterface
property), 132

layer_weight_tensors (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 132

leapfrog() (in module hypnettorch.utils.hmc), 184
LeNet (class in hypnettorch.mnets.lenet), 122
list_to_str() (in module hypnettorch.utils.misc), 193
load_checkpoint() (in module hypnet-

torch.utils.torch_ckpts), 203
load_datasets() (in module hypnet-

torch.examples.hypercl.run), 211
LocalConv2dLayer (class in hypnet-

torch.utils.local_conv2d_layer), 189
log_prob_standard_normal_prior() (in module

hypnettorch.utils.hmc), 185
logit_cross_entropy_loss() (hypnet-

torch.mnets.classifier_interface.Classifier
static method), 121

lstm_rnn_step() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
145

M
main_net_args() (in module hypnet-

torch.utils.cli_args), 163
MainNetInterface (class in hypnet-

torch.mnets.mnet_interface), 128
make_ckpt_list() (in module hypnet-

torch.utils.torch_ckpts), 204
mask_fc_out (hypnettorch.mnets.mnet_interface.MainNetInterface

property), 132
mat_A (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher

property), 63
mat_B (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher

property), 63
mat_C (hypnettorch.data.timeseries.rnd_rec_teacher.RndRecTeacher

property), 63
max_num_ts_in (hypnet-

torch.data.sequential_dataset.SequentialDataset
property), 17

max_num_ts_out (hypnet-
torch.data.sequential_dataset.SequentialDataset
property), 18

MCMC (class in hypnettorch.utils.hmc), 181
mean (hypnettorch.data.special.gaussian_mixture_data.GaussianData

property), 34

230 Index

hypnettorch, Release 1.0

means (hypnettorch.data.special.gmm_data.GMMData
property), 40

miscellaneous_args() (in module hypnet-
torch.utils.cli_args), 165

MLP (class in hypnettorch.mnets.mlp), 124
MNISTData (class in hypnettorch.data.mnist_data), 27
module

hypnettorch.data.celeba_data, 18
hypnettorch.data.cifar100_data, 21
hypnettorch.data.cifar10_data, 19
hypnettorch.data.cub_200_2011_data, 22
hypnettorch.data.dataset, 4
hypnettorch.data.fashion_mnist, 24
hypnettorch.data.ilsvrc2012_data, 25
hypnettorch.data.large_img_dataset, 14
hypnettorch.data.mnist_data, 27
hypnettorch.data.sequential_dataset, 16
hypnettorch.data.special.donuts, 32
hypnettorch.data.special.gaussian_mixture_data,

33
hypnettorch.data.special.gmm_data, 37
hypnettorch.data.special.permuted_mnist,

46
hypnettorch.data.special.regression1d_bimodal_data,

45
hypnettorch.data.special.regression1d_data,

42
hypnettorch.data.special.split_cifar, 50
hypnettorch.data.special.split_mnist, 48
hypnettorch.data.svhn_data, 29
hypnettorch.data.timeseries.audioset_data,

58
hypnettorch.data.timeseries.cognitive_tasks.cognitive_data,

63
hypnettorch.data.timeseries.copy_data, 53
hypnettorch.data.timeseries.mud_data, 57
hypnettorch.data.timeseries.rnd_rec_teacher,

60
hypnettorch.data.timeseries.seq_smnist,

64
hypnettorch.data.timeseries.smnist_data,

59
hypnettorch.data.timeseries.split_audioset,

65
hypnettorch.data.timeseries.split_smnist,

66
hypnettorch.data.udacity_ch2, 30
hypnettorch.examples.hypercl.run, 211
hypnettorch.hnets.chunked_deconv_hnet, 74
hypnettorch.hnets.chunked_mlp_hnet, 76
hypnettorch.hnets.deconv_hnet, 80
hypnettorch.hnets.hnet_container, 82
hypnettorch.hnets.hnet_helpers, 85
hypnettorch.hnets.hnet_interface, 69

hypnettorch.hnets.hnet_perturbation_wrapper,
87

hypnettorch.hnets.mlp_hnet, 90
hypnettorch.hnets.structured_hmlp_examples,

94
hypnettorch.hnets.structured_mlp_hnet, 97
hypnettorch.hpsearch.gather_random_seeds,

106
hypnettorch.hpsearch.hpsearch, 110
hypnettorch.hpsearch.hpsearch_config_template,

108
hypnettorch.hpsearch.hpsearch_postprocessing,

110
hypnettorch.mnets.bi_rnn, 113
hypnettorch.mnets.bio_conv_net, 116
hypnettorch.mnets.classifier_interface,

120
hypnettorch.mnets.lenet, 122
hypnettorch.mnets.mlp, 124
hypnettorch.mnets.mnet_interface, 128
hypnettorch.mnets.resnet, 134
hypnettorch.mnets.resnet_imgnet, 137
hypnettorch.mnets.simple_rnn, 139
hypnettorch.mnets.wide_resnet, 147
hypnettorch.mnets.zenkenet, 150
hypnettorch.utils.batchnorm_layer, 153
hypnettorch.utils.cli_args, 158
hypnettorch.utils.context_mod_layer, 167
hypnettorch.utils.ewc_regularizer, 172
hypnettorch.utils.gan_helpers, 177
hypnettorch.utils.hmc, 178
hypnettorch.utils.hnet_regularizer, 186
hypnettorch.utils.init_utils, 189
hypnettorch.utils.local_conv2d_layer, 189
hypnettorch.utils.logger_config, 191
hypnettorch.utils.misc, 192
hypnettorch.utils.optim_step, 194
hypnettorch.utils.self_attention_layer,

195
hypnettorch.utils.si_regularizer, 197
hypnettorch.utils.sim_utils, 200
hypnettorch.utils.torch_ckpts, 203
hypnettorch.utils.torch_utils, 205

MUDData (class in hypnet-
torch.data.timeseries.mud_data), 57

MultiChainHMC (class in hypnettorch.utils.hmc), 182

N
next_test_batch() (hypnettorch.data.dataset.Dataset

method), 9
next_train_batch() (hypnet-

torch.data.dataset.Dataset method), 9
next_val_batch() (hypnettorch.data.dataset.Dataset

method), 10

Index 231

hypnettorch, Release 1.0

nn_pot_energy() (in module hypnettorch.utils.hmc),
185

normal_init() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 170

num_chains (hypnettorch.utils.hmc.MultiChainHMC
property), 183

num_chunks (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv
property), 76

num_chunks (hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP
property), 80

num_chunks (hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP
property), 102

num_ckpts (hypnettorch.utils.context_mod_layer.ContextModLayer
property), 170

num_classes (hypnettorch.data.dataset.Dataset prop-
erty), 10

num_classes (hypnettorch.mnets.classifier_interface.Classifier
property), 121

num_hyper_weights() (hypnet-
torch.mnets.classifier_interface.Classifier
static method), 121

num_internal_params (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 132

num_known_conds (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 72

num_modes (hypnettorch.data.special.gmm_data.GMMData
property), 40

num_outputs (hypnettorch.hnets.hnet_interface.HyperNetInterface
property), 73

num_params (hypnettorch.mnets.mnet_interface.MainNetInterface
property), 132

num_rec_layers (hypnettorch.mnets.bi_rnn.BiRNN
property), 116

num_rec_layers (hypnet-
torch.mnets.simple_rnn.SimpleRNN property),
146

num_states (hypnettorch.utils.hmc.HMC property), 180
num_states (hypnettorch.utils.hmc.MCMC property),

182
num_stats (hypnettorch.utils.batchnorm_layer.BatchNormLayer

property), 157
num_steps (hypnettorch.utils.hmc.HMC property), 180
num_steps (hypnettorch.utils.hmc.NUTS property), 184
num_test_samples (hypnettorch.data.dataset.Dataset

property), 10
num_train_samples (hypnettorch.data.dataset.Dataset

property), 10
num_val_samples (hypnettorch.data.dataset.Dataset

property), 10
NUTS (class in hypnettorch.utils.hmc), 184

O
out_height (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer

property), 191
out_shape (hypnettorch.data.dataset.Dataset property),

10
out_width (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer

property), 191
output_to_torch_tensor() (hypnet-

torch.data.dataset.Dataset method), 10
output_to_torch_tensor() (hypnet-

torch.data.sequential_dataset.SequentialDataset
method), 18

output_to_torch_tensor() (hypnet-
torch.data.timeseries.cognitive_tasks.cognitive_data.CognitiveTasks
method), 64

output_to_torch_tensor() (hypnet-
torch.data.timeseries.copy_data.CopyTask
method), 56

output_to_torch_tensor() (hypnet-
torch.data.timeseries.mud_data.MUDData
method), 58

overwrite_internal_params() (hypnet-
torch.mnets.mnet_interface.MainNetInterface
method), 133

P
param_shapes (hypnet-

torch.mnets.mnet_interface.MainNetInterface
property), 133

param_shapes (hypnet-
torch.utils.batchnorm_layer.BatchNormLayer
property), 157

param_shapes (hypnet-
torch.utils.context_mod_layer.ContextModLayer
property), 171

param_shapes (hypnet-
torch.utils.local_conv2d_layer.LocalConv2dLayer
property), 191

param_shapes_meta (hypnet-
torch.mnets.mnet_interface.MainNetInterface
property), 133

param_shapes_meta (hypnet-
torch.utils.context_mod_layer.ContextModLayer
property), 171

permutation (hypnettorch.data.special.permuted_mnist.PermutedMNIST
property), 47

permutation (hypnettorch.data.timeseries.copy_data.CopyTask
property), 57

PermutedMNIST (class in hypnet-
torch.data.special.permuted_mnist), 46

PermutedMNISTList (class in hypnet-
torch.data.special.permuted_mnist), 47

plot_dataset() (hypnet-
torch.data.special.donuts.Donuts method),

232 Index

hypnettorch, Release 1.0

33
plot_dataset() (hypnet-

torch.data.special.gaussian_mixture_data.GaussianData
method), 34

plot_dataset() (hypnet-
torch.data.special.regression1d_data.ToyRegression
method), 43

plot_datasets() (hypnet-
torch.data.special.gaussian_mixture_data.GaussianData
static method), 34

plot_datasets() (hypnet-
torch.data.special.regression1d_data.ToyRegression
static method), 43

plot_optimal_classification() (hypnet-
torch.data.special.gmm_data.GMMData
method), 40

plot_predictions() (hypnet-
torch.data.special.gaussian_mixture_data.GaussianData
method), 35

plot_predictions() (hypnet-
torch.data.special.regression1d_data.ToyRegression
method), 44

plot_real_fake() (hypnet-
torch.data.special.gmm_data.GMMData
method), 41

plot_sample() (hypnet-
torch.data.cifar10_data.CIFAR10Data
method), 20

plot_sample() (hypnet-
torch.data.mnist_data.MNISTData static
method), 28

plot_samples() (hypnettorch.data.dataset.Dataset
method), 11

plot_samples() (hypnet-
torch.data.special.gaussian_mixture_data.GaussianData
method), 35

plot_samples() (hypnet-
torch.data.special.gmm_data.GMMData
method), 41

plot_samples() (hypnet-
torch.data.special.regression1d_data.ToyRegression
method), 44

plot_uncertainty_map() (hypnet-
torch.data.special.gmm_data.GMMData
method), 41

png_format_used (hypnet-
torch.data.large_img_dataset.LargeImgDataset
property), 16

position_trajectory (hypnettorch.utils.hmc.HMC
property), 181

position_trajectory (hypnettorch.utils.hmc.MCMC
property), 182

preprocess_fct (hypnettorch.mnets.bi_rnn.BiRNN
property), 116

preprocess_gain() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 171

proposal_std (hypnettorch.utils.hmc.MCMC property),
182

R
read_images() (hypnet-

torch.data.large_img_dataset.LargeImgDataset
method), 16

repair_canvas_and_show_fig() (in module hypnet-
torch.utils.misc), 193

reset_batch_generator() (hypnet-
torch.data.dataset.Dataset method), 11

ResNet (class in hypnettorch.mnets.resnet), 134
resnet_chunking() (in module hypnet-

torch.hnets.structured_hmlp_examples),
95

ResNetIN (class in hypnettorch.mnets.resnet_imgnet),
137

rmsprop_step() (in module hypnet-
torch.utils.optim_step), 195

RndRecTeacher (class in hypnet-
torch.data.timeseries.rnd_rec_teacher), 61

run() (in module hypnettorch.examples.hypercl.run),
211

run() (in module hypnet-
torch.hpsearch.gather_random_seeds), 107

run() (in module hypnettorch.hpsearch.hpsearch), 110

S
sample_annulus() (hypnet-

torch.data.special.donuts.Donuts static
method), 33

save_checkpoint() (in module hypnet-
torch.utils.torch_ckpts), 204

SelfAttnLayer (class in hypnet-
torch.utils.self_attention_layer), 195

SelfAttnLayerV2 (class in hypnet-
torch.utils.self_attention_layer), 196

SeqSMNIST (class in hypnet-
torch.data.timeseries.seq_smnist), 64

sequence (hypnettorch.data.dataset.Dataset property),
11

SequentialDataset (class in hypnet-
torch.data.sequential_dataset), 17

setup_environment() (in module hypnet-
torch.utils.sim_utils), 202

sgd_step() (in module hypnettorch.utils.optim_step),
195

shapes_to_num_weights() (hypnet-
torch.mnets.mnet_interface.MainNetInterface
static method), 133

Index 233

hypnettorch, Release 1.0

shuffle_test_samples (hypnet-
torch.data.dataset.Dataset property), 11

shuffle_val_samples (hypnet-
torch.data.dataset.Dataset property), 12

si_compute_importance() (in module hypnet-
torch.utils.si_regularizer), 198

si_post_optim_step() (in module hypnet-
torch.utils.si_regularizer), 198

si_pre_optim_step() (in module hypnet-
torch.utils.si_regularizer), 199

si_regularizer() (in module hypnet-
torch.utils.si_regularizer), 199

SimpleRNN (class in hypnettorch.mnets.simple_rnn), 139
simulate_chain() (hypnettorch.utils.hmc.HMC

method), 181
simulate_chain() (hypnettorch.utils.hmc.MCMC

method), 182
simulate_chain() (hypnettorch.utils.hmc.NUTS

method), 184
simulate_chains() (hypnet-

torch.utils.hmc.MultiChainHMC method),
183

SMNISTData (class in hypnet-
torch.data.timeseries.smnist_data), 59

softmax_and_cross_entropy() (hypnet-
torch.mnets.classifier_interface.Classifier
static method), 122

sparse_init() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 171

split_cm_weights() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
146

split_internal_weights() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
146

split_weights() (hypnet-
torch.mnets.simple_rnn.SimpleRNN method),
147

SplitAudioset (class in hypnet-
torch.data.timeseries.split_audioset), 65

SplitCIFAR100Data (class in hypnet-
torch.data.special.split_cifar), 50

SplitCIFAR10Data (class in hypnet-
torch.data.special.split_cifar), 51

SplitMNIST (class in hypnet-
torch.data.special.split_mnist), 49

SplitSMNIST (class in hypnet-
torch.data.timeseries.split_smnist), 67

stepsize (hypnettorch.utils.hmc.HMC property), 181
str_to_act() (in module hypnettorch.utils.misc), 193
str_to_floats() (in module hypnettorch.utils.misc),

193
str_to_ints() (in module hypnettorch.utils.misc), 193

StructuredHMLP (class in hypnet-
torch.hnets.structured_mlp_hnet), 99

SVHNData (class in hypnettorch.data.svhn_data), 29

T
target_shapes (hypnet-

torch.hnets.hnet_interface.HyperNetInterface
property), 73

test() (in module hypnettorch.examples.hypercl.run),
211

test_angles_available (hypnet-
torch.data.udacity_ch2.UdacityCh2Data
property), 31

test_ids_to_indices() (hypnet-
torch.data.dataset.Dataset method), 12

test_iterator() (hypnettorch.data.dataset.Dataset
method), 12

test_x_range (hypnet-
torch.data.special.regression1d_data.ToyRegression
property), 44

tf_input_map() (hypnet-
torch.data.cub_200_2011_data.CUB2002011
method), 24

tf_input_map() (hypnettorch.data.dataset.Dataset
method), 12

tf_input_map() (hypnet-
torch.data.ilsvrc2012_data.ILSVRC2012Data
method), 26

tf_input_map() (hypnet-
torch.data.large_img_dataset.LargeImgDataset
method), 16

tf_input_map() (hypnet-
torch.data.special.permuted_mnist.PermutedMNIST
method), 47

tf_input_map() (hypnet-
torch.data.udacity_ch2.UdacityCh2Data
method), 31

tf_output_map() (hypnettorch.data.dataset.Dataset
method), 12

to_common_labels() (hypnet-
torch.data.ilsvrc2012_data.ILSVRC2012Data
method), 26

torch_augment_images() (hypnet-
torch.data.cifar10_data.CIFAR10Data static
method), 20

torch_in_shape (hypnet-
torch.data.special.permuted_mnist.PermutedMNIST
property), 47

torch_input_transforms() (hypnet-
torch.data.cifar10_data.CIFAR10Data static
method), 21

torch_input_transforms() (hypnet-
torch.data.ilsvrc2012_data.ILSVRC2012Data
static method), 27

234 Index

hypnettorch, Release 1.0

torch_input_transforms() (hypnet-
torch.data.mnist_data.MNISTData static
method), 28

torch_input_transforms() (hypnet-
torch.data.special.permuted_mnist.PermutedMNIST
static method), 47

torch_input_transforms() (hypnet-
torch.data.udacity_ch2.UdacityCh2Data
static method), 31

torch_test (hypnettorch.data.large_img_dataset.LargeImgDataset
property), 16

torch_train (hypnettorch.data.large_img_dataset.LargeImgDataset
property), 16

torch_val (hypnettorch.data.large_img_dataset.LargeImgDataset
property), 16

ToyRegression (class in hypnet-
torch.data.special.regression1d_data), 42

train() (in module hypnettorch.examples.hypercl.run),
212

train_args() (in module hypnettorch.utils.cli_args),
166

train_ids_to_indices() (hypnet-
torch.data.dataset.Dataset method), 13

train_iterator() (hypnettorch.data.dataset.Dataset
method), 13

train_x_range (hypnet-
torch.data.special.regression1d_data.ToyRegression
property), 45

training (hypnettorch.hnets.chunked_deconv_hnet.ChunkedHDeconv
attribute), 76

training (hypnettorch.hnets.chunked_mlp_hnet.ChunkedHMLP
attribute), 80

training (hypnettorch.hnets.deconv_hnet.HDeconv at-
tribute), 82

training (hypnettorch.hnets.hnet_container.HContainer
attribute), 85

training (hypnettorch.hnets.hnet_perturbation_wrapper.HPerturbWrapper
attribute), 90

training (hypnettorch.hnets.mlp_hnet.HMLP attribute),
94

training (hypnettorch.hnets.structured_mlp_hnet.StructuredHMLP
attribute), 102

training (hypnettorch.mnets.bi_rnn.BiRNN attribute),
116

training (hypnettorch.mnets.bio_conv_net.BioConvNet
attribute), 120

training (hypnettorch.mnets.classifier_interface.Classifier
attribute), 122

training (hypnettorch.mnets.lenet.LeNet attribute), 124
training (hypnettorch.mnets.mlp.MLP attribute), 127
training (hypnettorch.mnets.resnet.ResNet attribute),

137
training (hypnettorch.mnets.resnet_imgnet.ResNetIN

attribute), 139

training (hypnettorch.mnets.simple_rnn.SimpleRNN at-
tribute), 147

training (hypnettorch.mnets.wide_resnet.WRN at-
tribute), 150

training (hypnettorch.mnets.zenkenet.ZenkeNet at-
tribute), 152

training (hypnettorch.utils.batchnorm_layer.BatchNormLayer
attribute), 157

training (hypnettorch.utils.context_mod_layer.ContextModLayer
attribute), 172

training (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer
attribute), 191

training (hypnettorch.utils.self_attention_layer.SelfAttnLayer
attribute), 196

training (hypnettorch.utils.self_attention_layer.SelfAttnLayerV2
attribute), 197

transform_outputs() (hypnet-
torch.data.special.split_cifar.SplitCIFAR100Data
method), 51

transform_outputs() (hypnet-
torch.data.special.split_cifar.SplitCIFAR10Data
method), 51

transform_outputs() (hypnet-
torch.data.special.split_mnist.SplitMNIST
method), 49

transform_outputs() (hypnet-
torch.data.timeseries.split_audioset.SplitAudioset
method), 66

transform_outputs() (hypnet-
torch.data.timeseries.split_smnist.SplitSMNIST
method), 67

U
UdacityCh2Data (class in hypnet-

torch.data.udacity_ch2), 31
unconditional_param_shapes (hypnet-

torch.hnets.hnet_interface.HyperNetInterface
property), 73

unconditional_param_shapes_ref (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 73

unconditional_params (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 73

unconditional_params_ref (hypnet-
torch.hnets.hnet_interface.HyperNetInterface
property), 74

uniform_init() (hypnet-
torch.utils.context_mod_layer.ContextModLayer
method), 172

use_lstm (hypnettorch.mnets.bi_rnn.BiRNN property),
116

use_lstm (hypnettorch.mnets.simple_rnn.SimpleRNN
property), 147

Index 235

hypnettorch, Release 1.0

V
val_ids_to_indices() (hypnet-

torch.data.dataset.Dataset method), 14
val_iterator() (hypnettorch.data.dataset.Dataset

method), 14
val_x_range (hypnettorch.data.special.regression1d_data.ToyRegression

property), 45

W
weight_shapes (hypnet-

torch.utils.self_attention_layer.SelfAttnLayerV2
property), 197

weight_shapes() (hypnettorch.mnets.mlp.MLP static
method), 128

weights (hypnettorch.mnets.mnet_interface.MainNetInterface
property), 134

weights (hypnettorch.utils.batchnorm_layer.BatchNormLayer
property), 158

weights (hypnettorch.utils.context_mod_layer.ContextModLayer
property), 172

weights (hypnettorch.utils.local_conv2d_layer.LocalConv2dLayer
property), 191

weights (hypnettorch.utils.self_attention_layer.SelfAttnLayerV2
property), 197

write_seeds_summary() (in module hypnet-
torch.hpsearch.gather_random_seeds), 108

WRN (class in hypnettorch.mnets.wide_resnet), 147
wrn_chunking() (in module hypnet-

torch.hnets.structured_hmlp_examples),
96

X
xavier_fan_in_() (in module hypnet-

torch.utils.init_utils), 189

Z
ZenkeNet (class in hypnettorch.mnets.zenkenet), 150

236 Index

	Custom data handlers for common ML datasets
	Preparation of datasets
	Large-scale CelebFaces Attributes (CelebA) Dataset
	Imagenet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
	Udacity Steering Angle Prediction

	API
	Dataset Interface
	Wrapper for large image datasets
	Wrapper for sequential datasets
	CelebA Dataset
	CIFAR-10 Dataset
	CIFAR-100 Dataset
	CUB-200-2011 Dataset
	Fashion-MNIST Dataset
	ILSVRC2012 Dataset
	MNIST Dataset
	Street View House Numbers (SVHN) Dataset
	Udacity Self-Driving Car Challenge 2 - Steering Angle Prediction

	Sequential, custom and special datasets
	Custom and special datasets
	Continual Learning Datasets
	Toy (Regression) Problems
	2D Donut Dataset
	Gaussian Mixture via a set of Gaussian Datasets
	Gaussian Mixture Model Dataset
	1D Regression Dataset
	1D Regression Dataset with bimodal error

	Classification Tasks
	Permuted MNIST Dataset
	Split MNIST Dataset
	Split CIFAR-10/100 Dataset

	Timeseries Datasets
	Common Datasets
	Dataset for the sequential copy task
	Multilingual universal Dependencies Dataset
	Dataset for the Audioset task
	Stroke MNIST (SMNIST) Dataset

	Custom Datasets
	Dataset from random recurrent teacher networks

	Continual Learning Datasets
	Set of cognitive tasks
	Sequence of Stroke MNIST Samples (SeqSMNIST) Dataset
	Split Audioset Dataset
	Split SMNIST Dataset

	Hypernetworks
	Hypernetwork Interface
	Chunked Deconvolutional Hypernetwork with Self-Attention Layers
	Chunked MLP - Hypernetwork
	Deconvolutional Hypernetwork with Self-Attention Layers
	Hypernetwork-container that wraps a mixture of hypernets
	Helper functions for hypernetworks
	Hypernetwork-wrapper for input-preprocessing and output-postprocessing
	MLP - Hypernetwork
	Example Instantiations of a Structured Chunked MLP - Hypernetwork
	Structured Chunked MLP - Hypernetwork

	Hyperparameter Searches
	A general framework to perform hyperparameter searches on single- and multi-GPU systems
	How to run a hyperparameter search
	Execute on a single- or multi-GPU system without job scheduling
	Execute on a cluster with IBM Platform LSF
	Execute on a cluster with Slurm Workload Manager
	Execute on a cluster with unsupported job scheduler

	Postprocessing
	How to use this framework with your simulation
	Gather random seeds for a given experiment
	Hyperparameter Search Configuration File
	Hyperparameter Search - Postprocessing
	Hyperparameter Search Script

	Main Networks
	Bidirectional Recurrent Neural Network
	A bio-plausible convolutional network for CIFAR
	Interface for Classifiers
	LeNet
	Multi-Layer Perceptron
	Main-Network Interface
	ResNet
	ResNet for ImageNet
	SimpleRNN
	Wide-ResNet
	The Convnet used by Zenke et al. for CIFAR-10/100

	Utilities and helper functions
	Batch Normalization
	Common command-line arguments
	Important note for contributors

	Context-modulation layer
	Elastic Weight Consolidation
	Helper functions for training Generative Adversarial Networks
	Hamiltonian-Monte-Carlo
	Hypernetwork Regularization
	Helper functions for weight initialization
	2D-convolutional layer without weight sharing
	Console/file logging
	Miscellaneous Utilities
	Compute Parameter Changes without Update Steps
	Self-Attention Layer
	Synaptic Intelligence
	General helper functions for simulations
	Checkpointing PyTorch Models

	Tutorials on how to use hypernetworks in PyTorch
	Example implementations that use hypnettorch
	Continual learning with hypernetworks
	Usage instructions
	Learning from the example
	Script to run CL experiments with hypernetworks

	Installation
	Usage
	Indices and tables
	Bibliography
	Python Module Index
	Index

