Source code for hypnettorch.utils.optim_step

#!/usr/bin/env python3

# The code in this file is taken (and modified) from:
#   https://github.com/pytorch/pytorch
# The following license and copyright applies!
# Note, that we use this code WITHOUT ANY WARRANTIES.

# From PyTorch:
#
# Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
# Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU                      (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
#
# From Caffe2:
#
# Copyright (c) 2016-present, Facebook Inc. All rights reserved.
#
# All contributions by Facebook:
# Copyright (c) 2016 Facebook Inc.
#
# All contributions by Google:
# Copyright (c) 2015 Google Inc.
# All rights reserved.
#
# All contributions by Yangqing Jia:
# Copyright (c) 2015 Yangqing Jia
# All rights reserved.
#
# All contributions from Caffe:
# Copyright(c) 2013, 2014, 2015, the respective contributors
# All rights reserved.
#
# All other contributions:
# Copyright(c) 2015, 2016 the respective contributors
# All rights reserved.
#
# Caffe2 uses a copyright model similar to Caffe: each contributor holds
# copyright over their contributions to Caffe2. The project versioning records
# all such contribution and copyright details. If a contributor wants to further
# mark their specific copyright on a particular contribution, they should
# indicate their copyright solely in the commit message of the change when it is
# committed.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#
# 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
#    and IDIAP Research Institute nor the names of its contributors may be
#    used to endorse or promote products derived from this software without
#    specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# @title           :utils/optim_step.py
# @author          :ch
# @contact         :henningc@ethz.ch
# @created         :04/17/2019
# @version         :1.0
# @python_version  :3.6.7
"""
Compute Parameter Changes without Update Steps
----------------------------------------------

PyTorch optimizers don't provide the ability to get a lookahead of the change to
the parameters applied by the :meth:`torch.optim.Optimizer.step` method.
Therefore, this module copies ``step()`` functions from some optimizers, but
without applying the weight change and without making changes to the internal
state of an optimizer, such that the user can get the change of parameters that
would be executed by the optimizer.
"""

from torch import optim
import torch
import math

[docs]def calc_delta_theta(optimizer, use_sgd_change, lr=None, detach_dt=True): r"""Calculate :math:`\Delta\theta`, i.e., the change in trainable parameters (:math:`\theta`) in order to minimize the task-specific loss. **Note**, one has to call :func:`torch.autograd.backward` on a desired loss before calling this function, otherwise there are no gradients to compute the weight change that the optimizer would cause. Hence, this method is called in between :func:`torch.autograd.backward` and :meth:`torch.optim.Optimizer.step`. Note, by default, gradients are detached from the computational graph. Args: optimizer: The optimizer that will be used to change :math:`\theta`. use_sgd_change: If :code:`True`, then we won't calculate the actual step done by the current optimizer, but the one that would be done by a simple SGD optimizer. lr: Has to be specified if `use_sgd_change` is :code:`True`. The learning rate if the optimizer. detach_dt: Whether :math:`\Delta\theta` should be detached from the computational graph. Note, in order to backprop through :math:`\Delta\theta`, you have to call :func:`torch.autograd.backward` with `create_graph` set to :code:`True` before calling this method. Returns: :math:`\Delta\theta` """ assert(not use_sgd_change or lr is not None) if use_sgd_change: ret = [] for g in optimizer.param_groups: for p in g['params']: if detach_dt: ret.append(-lr * p.grad.detach().clone()) else: ret.append(-lr * p.grad.clone()) return ret else: if isinstance(optimizer, optim.SGD): return sgd_step(optimizer, detach_dp=detach_dt) if isinstance(optimizer, optim.Adam): return adam_step(optimizer, detach_dp=detach_dt) if isinstance(optimizer, optim.RMSprop): return rmsprop_step(optimizer, detach_dp=detach_dt) else: raise NotImplementedError('Not implemented for optimizer %s' % optimizer.type)
[docs]def sgd_step(optimizer, detach_dp=True): """Performs a single optimization step using the SGD optimizer. The code has been copied from: https://git.io/fjYit Note, this function does not change the inner state of the given optimizer object. Note, gradients are cloned and detached by default. Args: optimizer: An instance of class :class:`torch.optim.SGD`. detach_dp: Whether gradients are detached from the computational graph. Note, :code:`False` only makes sense if func:`torch.autograd.backward` was called with the argument `create_graph` set to :code:`True`. Returns: A list of gradient changes `d_p` that would be applied by this optimizer to all parameters when calling :meth:`torch.optim.SGD.step`. """ assert(isinstance(optimizer, optim.SGD)) d_ps = [] for group in optimizer.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue if detach_dp: d_p = p.grad.detach().clone() else: d_p = p.grad.clone() if weight_decay != 0: d_p.add_(weight_decay, p.data) if momentum != 0: orig_state = dict(optimizer.state[p]) param_state = dict() if 'momentum_buffer' in orig_state: param_state['momentum_buffer'] = \ orig_state['momentum_buffer'].clone() if 'momentum_buffer' not in param_state: buf = torch.clone(d_p).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) #buf = buf.mul(momentum).add(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf d_ps.append(-group['lr'] * d_p) return d_ps
[docs]def adam_step(optimizer, detach_dp=True): """Performs a single optimization step using the Adam optimizer. The code has been copied from: https://git.io/fjYP3 Note, this function does not change the inner state of the given optimizer object. Note, gradients are cloned and detached by default. Args: optimizer: An instance of class :class:`torch.optim.Adam`. detach_dp: Whether gradients are detached from the computational graph. Note, :code:`False` only makes sense if func:`torch.autograd.backward` was called with the argument `create_graph` set to :code:`True`. Returns: A list of gradient changes `d_p` that would be applied by this optimizer to all parameters when calling :meth:`torch.optim.Adam.step`. """ assert (isinstance(optimizer, optim.Adam)) d_ps = [] for group in optimizer.param_groups: for p in group['params']: if p.grad is None: continue if detach_dp: grad = p.grad.detach().clone() else: grad = p.grad.clone() if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] if amsgrad and not detach_dp: raise ValueError('Cannot backprop through optimizer step if ' + '"amsgrad" is enabled.') orig_state = dict(optimizer.state[p]) state = dict() # State initialization if len(orig_state) == 0: orig_state['step'] = 0 # Exponential moving average of gradient values orig_state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values orig_state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values orig_state['max_exp_avg_sq'] = torch.zeros_like(p.data) # Copy original state. state['step'] = int(orig_state['step']) state['exp_avg'] = orig_state['exp_avg'].clone() state['exp_avg_sq'] = orig_state['exp_avg_sq'].clone() if amsgrad: state['max_exp_avg_sq'] = orig_state['max_exp_avg_sq'].clone() exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: #grad.add_(group['weight_decay'], p.data) grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) #exp_avg.mul_(beta1) #exp_avg += (1 - beta1) * grad exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) #exp_avg_sq.mul_(beta2) #exp_avg_sq = torch.addcmul(exp_avg_sq, 1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: #denom = exp_avg_sq.sqrt().add_(group['eps']) denom = exp_avg_sq.sqrt() + group['eps'] bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt( bias_correction2) / bias_correction1 d_ps.append(-step_size * (exp_avg / denom)) return d_ps
[docs]def rmsprop_step(optimizer, detach_dp=True): """Performs a single optimization step using the RMSprop optimizer. The code has been copied from: https://git.io/fjurp Note, this function does not change the inner state of the given optimizer object. Note, gradients are cloned and detached by default. Args: optimizer: An instance of class :class:`torch.optim.Adam`. detach_dp: Whether gradients are detached from the computational graph. Note, :code:`False` only makes sense if func:`torch.autograd.backward` was called with the argument `create_graph` set to :code:`True`. Returns: A list of gradient changes `d_p` that would be applied by this optimizer to all parameters when calling :meth:`torch.optim.RMSprop.step`. """ assert (isinstance(optimizer, optim.RMSprop)) d_ps = [] for group in optimizer.param_groups: for p in group['params']: if p.grad is None: continue if detach_dp: grad = p.grad.detach().clone() else: grad = p.grad.clone() if grad.is_sparse: raise RuntimeError('RMSprop does not support sparse gradients') orig_state = dict(optimizer.state[p]) state = dict() # State initialization if len(orig_state) == 0: orig_state['step'] = 0 orig_state['square_avg'] = torch.zeros_like(p.data) if group['momentum'] > 0: orig_state['momentum_buffer'] = torch.zeros_like(p.data) if group['centered']: orig_state['grad_avg'] = torch.zeros_like(p.data) # Copy original state. state['step'] = int(orig_state['step']) state['square_avg'] = orig_state['square_avg'].clone() if group['momentum'] > 0: state['momentum_buffer'] = orig_state['momentum_buffer'].clone() if group['centered']: state['grad_avg'] = orig_state['grad_avg'].clone() square_avg = state['square_avg'] alpha = group['alpha'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) #square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) square_avg = square_avg.mul(alpha).addcmul(1 - alpha, grad, grad) if group['centered']: grad_avg = state['grad_avg'] grad_avg.mul_(alpha).add_(1 - alpha, grad) #avg = square_avg.addcmul(-1, grad_avg, grad_avg).sqrt().add_(group['eps']) avg = square_avg.addcmul(-1, grad_avg, grad_avg).sqrt().\ add(group['eps']) else: #avg = square_avg.sqrt().add_(group['eps']) avg = square_avg.sqrt().add(group['eps']) if group['momentum'] > 0: buf = state['momentum_buffer'] #buf.mul_(group['momentum']).addcdiv_(grad, avg) buf = buf.mul(group['momentum']) + grad / avg d_ps.append(-group['lr'] * buf) else: d_ps.append(-group['lr'] * (grad / avg)) return d_ps
if __name__ == '__main__': pass